



## What Is Metamorphism?

- Metamorphism means to "change form"
  - The transition of one rock into another by temperatures and/or pressures unlike those in which it formed
  - Changes in mineralogy and sometimes chemical composition
- Every metamorphic rock has a parent rock (the rock from which it formed)
  - Parent rocks can be igneous, sedimentary, or other metamorphic rocks



## What Is Metamorphism?

- **Metamorphic grade** is the degree to which the parent rock changes during metamorphism
  - Progresses from low grade (low temperatures and pressures) to high grade (high temperatures and pressures)
- During metamorphism, the rock must remain essentially solid



# What Drives Metamorphism?

- Heat
  - Most important agent
    - Provides the energy needed for chemical reactions
    - Recrystallization is the process of forming new, stable minerals larger than the original
  - Two sources of heat:
    - Geothermal gradient: an increase in temperature with depth (about 25°C per kilometer)
    - Contact metamorphism: rising mantle plumes



### What Drives Metamorphism?

### • Confining Pressure

- Forces are applied equally in all directions
  - Analogous to water pressure
- Causes the spaces between mineral grains to close

### What Drives Metamorphism?

### • Differential Stress

- Forces are unequal in different directions
  - Stresses are greater in one direction

### Compressional stress

- Rocks are squeezed as if in a vice
- Shortened in one direction and elongated in the other direction
- In high pressure and temperature environments rocks are *ductile* and will stretch, flatten, or fold







### What Drives Metamorphism?

- · Chemically Active Fluids
  - Water becomes a hot ion-rich fluid
    - Hydrothermal solution
  - Enhances migration of ions
  - Aids in recrystallization of existing minerals
    - Can change overall chemical composition
  - In some environments, fluids can transport mineral matter over considerable distances

# **What Drives Metamorphism?**

- The Importance of Parent Rock
  - Most metamorphic rocks have the same overall chemical composition as the original parent rock
    - Except for loss/gain of volatiles (H2O, CO2)
  - Mineral makeup determines the degree to which each metamorphic agent will cause change

### **Metamorphic Textures**

- **Texture** describes the size, shape, and arrangement of mineral grains
  - Metamorphic rocks can display preferred orientation of minerals, where the platy mineral grains exhibit parallel to sub-parallel alignment
  - Called foliation
    - Describes any planar arrangement of mineral grains or structural features within a rock

## **Metamorphic Textures**

- Examples of foliation
  - Parallel alignment of platy and/or elongated minerals
  - Parallel alignment of flattened mineral grains or pebbles
  - Compositional banding of dark and light minerals
  - Cleavage where rocks can be easily split into slabs



### **Metamorphic Textures**

- Foliation can form in various ways, including:
  - Rotation of platy minerals
  - Recrystallization that produces new minerals perpendicular to the direction of maximum stress
  - Flattening spherically shaped grains



### **Metamorphic Textures**

- Foliated Textures
  - Rock or Slaty Cleavage
    - · Rocks split into thin slabs
    - Develops in beds of shale with low-grade

metamorphism





## **Metamorphic Textures**

- · Foliated Textures
  - Schistosity
    - Platy minerals are discernible with the unaided eye
      - Mica and chlorite flakes begin to recrystallize into large muscovite and biotite crystals
    - Exhibit a planar or layered structure
    - Rocks having this texture are referred to as schist

## **Metamorphic Textures**

- Foliated Textures
  - Gneissic texture
    - During high-grade metamorphism, ion migration results in segregation of minerals into light and dark bands
    - Metamorphic rocks with this texture are called gneiss
    - Although foliated, gneisses do not split as easily as slates and schiets.



### **Metamorphic Textures**

- · Other Metamorphic Textures
  - Nonfoliated metamorphic rocks are composed of minerals that exhibit equidimensional crystals and lack foliation
    - Develop in environments where deformation is minimal, and from parent rocks with equidimensional minerals (e.g., quartz and calcite)
  - Porphyroblastic textures
    - Unusually large grains, called porphyroblasts, are surrounded by a fine-grained matrix of other minerals



### **Common Metamorphic Rocks**

- · Foliated Rocks
  - Slate
  - · Very fine-grained, resembles shale
  - Most often generated from low-grade metamorphism of shale, mudstone, or siltstone
  - Phyllite
    - · Degree of metamorphism between slate and schist
    - Platy minerals are larger than slate but not large enough to see with the unaided eye
    - · Glossy sheen and wavy surfaces
  - Both slate and phyllite exhibit rock cleavage

# Common Metamorphic Rocks Foliated Rocks - Schist Medium- to coarse-grained Parent rock is shale that has undergone medium-to high-grade metamorphism The term schist describes the texture Platy minerals (mainly micas) predominate Can also contain porphyroblasts

## **Common Metamorphic Rocks**

- Foliated Rocks
  - Gneiss
    - Medium- to coarsegrained metamorphic rock with a banded appearance
    - The result of highgrade metamorphism
    - Composed of lightcolored, feldsparrich layers with bands of dark ferromagnesian minerals







### **Common Metamorphic Rocks**

- · Nonfoliated Rocks
  - Marble
    - Crystalline rock from limestone or dolostone parent
    - Main mineral is calcite
      - Calcite is relatively soft (3 on the Mohs scale)
      - Used as a decorative and monument stone
      - But... weathers easily in acid rain
    - Impurities in the parent rocks provide a variety of colors of marble

### **Common Metamorphic Rocks**

- · Nonfoliated Rocks
  - Quartzite
    - Formed from a parent rock of quartz sandstone
    - · Quartz grains are fused together
    - Pure quartzite is white
      - Iron oxide may produce reddish or pink stains
      - Dark minerals may produce green or gray stains
      - Cross-bedding and other sedimentary structures can be preserved in quartzite

### - Hornfels

- Parent rock is shale or clay-rich rocks
- Fine-grained with variable mineral composition
- "Baked" by an intruding magma body



## **Metamorphic Environments**

- · Metamorphism occurs in a variety of environments
  - In the vicinity of plate margins
  - Associated with igneous activity
    - Contact or thermal metamorphism
    - Hydrothermal metamorphism
    - Burial metamorphism
    - Subduction zone metamorphism
    - Regional metamorphism



### **Metamorphic Environments**

### • Contact, or Thermal, Metamorphism

- Results from a rise in temperature when magma invades a host rock
- Occurs in the upper crust (low pressure, high temperature)
- The zone of alteration (aureole) forms in the rock immediately surrounding the magma
- Aureoles consist of distinct zones of metamorphism



# **Metamorphic Environments**

### · Hydrothermal Metamorphism

- Chemical alteration caused by hot, ion-rich water circulating through pore spaces and rock fractures
- Typically occurs along the axes of mid-ocean ridges
- Black smokers are the result of the fluids gushing from the seafloor
- Also occurs associated with hot springs and geysers







### **Metamorphic Environments**

### Burial Metamorphism

- Associated with very thick sedimentary strata in a subsiding basin
  - Confining pressure and heat drive recrystallization

### Subduction Zone Metamorphism

- Sediments and oceanic crust are subducted fast enough that pressure increases before temperature
  - Differential stress drives metamorphism

### **Metamorphic Environments**

### · Regional Metamorphism

- Common, widespread type of metamorphism
- Produces the greatest quantity of metamorphic rock
- Associated with mountain building and the collision of continental blocks
- Crust is shortened, thickened, folded, and faulted



### **Metamorphic Environments**

- Metamorphism Along Fault Zones
  - Occurs at depth and high temperatures
  - Pre-existing minerals deform by ductile flow
    - Minerals form a foliated or lineated appearance
    - Rocks formed in these regions are called mylonites

## Impact Metamorphism

- Also called shock metamorphism
- Occurs when meteoroids strike Earth's surface
  - Product of these impacts (called *impactites*) are fused fragmented rock plus glass-rich ejecta that resemble volcanic bombs



## **Metamorphic Zones**

### Textural Variations

- In areas where regional metamorphism has occurred, rock texture varies based on intensity of metamorphism
  - Slate is associated with low-grade metamorphism
  - Phyllite and schist are intermediate
  - Gneiss is associated with high-grade metamorphism



# **Metamorphic Zones**

- Index Minerals and Metamorphic Grade
  - Changes in mineralogy occur from regions of low-grade metamorphism to regions of high-grade metamorphism
  - Index minerals are good indicators of metamorphic grades, and thus zones of metamorphism
  - Migmatites are rocks that have been partially melted
    - Represent the highest grades of metamorphism
    - Transitional to igneous rocks









### **Interpreting Metamorphic Environments**

- Common Metamorphic Facies
  - Metamorphic rocks that contain the same mineral assemblage and formed in similar metamorphic environments
    - Mineral assemblages can be used to determine the pressure and temperature conditions the rock formed under
    - Metamorphic facies include:
      - Hornfels, zeolite, greenschist, amphibolite, granulite, blueschist, and eclogite



# **Interpreting Metamorphic Environments**

- Metamorphic Facies and Plate Tectonics
  - High-pressure, low-temperature metamorphism is associated with the upper section of subduction zones
  - Regional metamorphism is associated with colliding continental blocks
  - Low pressure, low- to high-temperature metamorphism is associated with divergent plate boundaries



# A. Blueschist forms in low-temperature, high-pressure environments B. Eclogite forms in high-temperature and extreme high-pressure environments

# **Interpreting Metamorphic Environments**

- Mineral Stability and Metamorphic Environments
  - Some minerals are only stable at certain temperature and pressure regimes
    - Examples include andalusite, kyanite, and sillimanite, all having the same chemical composition but forming under different metamorphic conditions
  - Knowing the range of temperatures and pressures associated with mineral formation can aid in interpreting the metamorphic environment



