The Earth as a System: The Hydrologic Cycle

- Earth is unique in the solar system
 - Right size and distance from the Sun to have liquid water
 - Mantle convection brings water to Earth's surface through volcanism
- The hydrologic cycle describes the movement of water through Earth's four spheres
 - Geosphere, hydrosphere, atmosphere, biosphere

The Earth as a System: The Hydrologic Cycle

- Movement Through the Hydrologic Cycle
 - Water evaporates from the oceans, plants, and soil and moves through the atmosphere
 - Water leaves the atmosphere via precipitation
 - Precipitation either
 - Soaks into the ground (infiltration),
 - Runs over the surface (runoff),
 - Evaporates, or
 - Is stored as part of a snowfield or glacier
 - The Hydrologic Cycle is balanced:
 - Water is constantly moving from one reservoir to another, but the total amount on earth remains the same

Distribution of Earth's Water

- Total global water: 96.5%
- Freshwater: 2.5%
- Surface water and other freshwater: 1.3%
- Groundwater: 30.1%
- Lakes: 20.1%
- Glaciers and ice sheets: 68.6%
- Snow and ice: 73.1%
- Atmosphere: 0.22%
- Biological water: 0.22%
- Rivers: 0.46%
- Swamps: 2.53%
- Soil moisture: 3.52%

The Hydrologic Cycle
The Earth as a System: The Hydrologic Cycle

• Movement Through the Hydrologic Cycle
 – Transpiration involves water absorbed by plants and later transferred to the atmosphere
 – As evaporation and transpiration both move water from the surface to the atmosphere, they are often considered a combined process called evapotranspiration

Running Water

• The difference between runoff and infiltration depends on
 – Intensity and duration of rainfall
 – The amount of water already in the soil
 – The type of soil
 – Slope of the land
 – Nature of the vegetative cover
• When the surface is impermeable or saturated, runoff is dominant
 – Runoff is high in urban areas due to buildings, roads and parking lots

Running Water

• Runoff Will Start as Sheet Flow
 – Sheet flow develops into tiny channels called rills
 – Rills meet to form gullies
 – Gullies join to form brooks, creeks, or streams
 • A stream is any water that flows in a channel, regardless of size
 • A river carries a substantial amount of water and has many tributaries

Running Water

• Drainage Basins
 – A stream drains an area of land called a drainage basin or watershed
 – The imaginary line separating one basin from another is called a divide
 • Sometimes visible as a high ridge in a mountainous region
 • Sometimes hard to determine in subdued topography
 – A continental divide splits a continent into different drainage basins
 – If you observed streams over several years, you would see many lengthen their courses by headward erosion

Drainage Basin and Divide

Mississippi River Drainage Basin
River Systems
- Rivers drain much of the land area
 - Exceptions: extremely arid or polar regions
 - The variety of rivers that exist is a reflection of the different environments they are found in
 - Climate differences and human intervention influence the character of a river
- River systems can be divided into three zones
 - Sediment production (erosion dominates)
 - Sediment transportation
 - Sediment deposition

Sediment production
- Zone where most sediment is derived
- Located in the headwater region of a river system
- Sediment generated by
 - Bedrock broken into smaller pieces
 - Bank erosion
 - Scouring of the channel bed

Sediment deposition
- When a river reaches a large body of water, the energy decreases and the river deposits sediments
- Typically only fine sediments are deposited in oceans

Zones of a River
Drainage Patterns

- Drainage systems are patterns of the interconnected network of streams in an area
 - Common drainage patterns
 - **Dendritic**
 - The most common
 - Uniform underlying material
 - **Radial**
 - Typically forms on volcanic cones or domes
 - **Rectangular**
 - Bedrock is jointed or faulted
 - **Trellis**
 - Bedrock consists of alternating bands of resistant and weak strata

Drainage Patterns

- **Formation of a Water Gap**
 - A water gap is a notch where a river cuts through a ridge that lies in its path
 - Two possible methods of formation:
 - **Antecedent stream**
 - Stream existed before the ridge was uplifted
 - **Superposed stream**
 - Stream was eroded into a preexisting structure buried beneath layers of relatively flat lying strata

Superposed Stream

Streamflow

- Water Moves in a River Channel Under the Influence of Gravity
 - Water slowly flowing in a nearly straight path is called **laminar flow**
 - Water moving quickly in an erratic fashion (both horizontal and vertical movement) is called **turbulent flow**
 - Streams typically exhibit turbulent flow
Streamflow

Factors Affecting Flow Velocity
- **The slope, or gradient, of the stream**
 - A steeper gradient has more gravitational energy to drive channel flow
- **Channel shape**
 - The **wetted perimeter** is the area where the river is in contact with the channel
 - The most efficient channel has a small wetted perimeter compared to its cross-sectional area
 - A narrow, deep channel has a small wetted perimeter, less frictional drag, and will flow more efficiently
- **Water depth affects frictional resistance**
 - Maximum flow velocity occurs when a stream is bankfull
- **An increase in channel size will increase the cross-sectional area to wetted perimeter ratio, thus increasing channel efficiency**
- **Rough channels (boulders, etc.) create turbulence and decreased velocity**

Changes Downstream
- **A longitudinal profile** is a cross-sectional view of a stream
 - **Head or headwater** is the source of the stream
 - **Mouth** is the downstream point where the stream empties into a larger body of water
 - Most longitudinal profiles have a concave shape
- **Discharge increases toward the mouth**
- **Channel size and velocity also increase toward the mouth**
- **Slope decreases downstream**
- **Volume increases downstream**

Influence of Channel Shape on Stream Velocity

- **Discharge** is the volume of water flowing past a certain point in a given unit of time
 - When discharge increases, the width, depth, and flow velocity increase predictably
- **Monitoring streamflow**
 - The U.S. Geological Survey (USGS) measures flow velocity, discharge, and river stage (height of water surface relative to a fixed point)
 - USGS network of 7500 stream gaging stations
 - These data are useful for resource management
Longitudinal Profile

Channel Changes from Head to Mouth

The Work of Running Water

- Stream Erosion
 - Erosion related to slope, discharge, and bed/bank sediments
 - Sand-sized particles are easily eroded
 - Silt/clay-sized particles and gravels are harder to erode
 - Channels with cohesive silty bottoms are typically narrower than sandy channels
 - Streams cut channels by quarrying, abrasion, and corrosion
 - Quarrying involves removing large blocks from the channel bed
 - Aided by fracturing of bedrock

- Potholes
 - Transport of Sediment by Streams
 - All streams transport some sediment
 - Sediment load is transported in three ways:
 - Dissolved load (in solution)
 - Suspended load (in suspension)
 - Bed load (sliding, skipping, or rolling along the bottom)
Transport of Sediments

- **Dissolved load**
 - Most of the dissolved load is brought to a stream **via groundwater**
 - Dissolved load is not affected by stream velocity
 - Dissolved minerals precipitate when water chemistry changes
 - When organisms create hard parts
 - When water enters an inland “sea” where the evaporation rate is high

- **Suspended load**
 - The largest part of a stream’s load is carried in **suspension**
 - Usually only fine sand, silt, and clay are carried this way
 - During a flood stage, larger particles can also be carried in suspension
 - Amount of material carried in suspension is controlled by stream velocity and settling velocity of sediments
 - **Settling velocity** is the speed at which a particle falls through a still liquid

- **Bedload**
 - Coarse sands, gravel, and boulders move along the stream bed by **saltation** (skipping or jumping)
 - Larger particles slide or roll along the bottom
 - Less rapid and more localized than transport via suspended load
 - Coarse gravels may only be moved during times of high flow while boulders move only during exceptional floods

The Work of Running Water

- **Transport of Sediment by Streams**
 - **Dissolved load**
 - **Suspended load**
 - The largest part of a stream’s load is carried in **suspension**
 - Usually only fine sand, silt, and clay are carried this way
 - During a flood stage, larger particles can also be carried in suspension
 - Amount of material carried in suspension is controlled by stream velocity and settling velocity of sediments
 - **Settling velocity** is the speed at which a particle falls through a still liquid
 - **Bedload**
 - Coarse sands, gravel, and boulders move along the stream bed by **saltation** (skipping or jumping)
 - Larger particles slide or roll along the bottom
 - Less rapid and more localized than transport via suspended load
 - Coarse gravels may only be moved during times of high flow while boulders move only during exceptional floods

- **Capacity and competence**
 - Describes a stream’s ability to carry solid particles
 - **Capacity** is the maximum load of solid particles a stream can carry per unit time
 - The greater the discharge, the greater the capacity
 - **Competence** is the maximum particle size a stream can transport
 - Streams with a faster velocity have a higher competence
The Work of Running Water

- Deposition of Sediment by a Stream
 - Deposition occurs when a stream’s velocity is less than the settling velocity
 - Particles of the same size are deposited at the same time in a process called sorting
 - Larger particles settle out first
 - Sediments deposited by streams are called alluvium

Stream Channels

- Bedrock Channels
 - Bedrock channels are cut into the underlying strata
 - Typically form in the headwater region where streams have a steep slope
 - Energetic flow tends to transport coarse particles that actively abrade the bedrock channel
 - Steps and pools are common features of bedrock channels
 - Channel pattern is controlled by the underlying geology

Stream Channels

- Alluvial Channels
 - Alluvial channels form in sediment previously deposited in the valley
 - Typically associated with a floodplain
 - Channels can change shape as material is eroded and transported
 - Channel shape is affected by the average size of sediment, gradient, and discharge
 - Channel patterns reflect the stream’s ability to transport load at a uniform rate while expending the least amount of energy

Stream Channels

- Meandering Channels
 - Streams transport suspended sediment in broad, sweeping bends called meanders
 - Relatively deep, smooth channels, primarily transporting mud
 - Meandering channels evolve over time
 - The outside of a meander (cutbank) is a zone of active erosion
 - The inside of a meander (point bar) is a zone of deposition
 - Through time, the bends in a channel can also migrate and eventually join together
 - A meander that has been cut off from joined bends is called a cutoff oxbow lake

Formation of Cut Banks and Point Bars

Formation of an Oxbow Lake
Stream Channels

- Alluvial Channels
 - Braided channels
 - A braided channel is a complex network of converging and diverging channels that thread among numerous islands or gravel bars
 - A large portion of the load is coarse material
 - Bank material is easily eroded and reworked
 - Stream has a highly variable discharge
 - Commonly form at the toe of a glacier

Braided Stream

Shaping Stream Valleys

- A stream valley is the channel and the surrounding terrain that directs water to the stream
 - Alluvial channels have wide valley floors
 - Bedrock channels have narrow V-shaped valleys
 - In arid climates, narrow valleys have nearly vertical walls—called slot canyons

Slot Canyon

Shaping Stream Valleys

- Base Level and Graded Streams
 - The base level is the lowest point to which a stream can erode
 - Ultimate base level is sea level
 - Local or temporary base level includes lakes, resistant layers of rock, and large rivers
 - All limit a stream’s ability to downcut its channel
 - Changing conditions causes readjustment of stream activities
 - Raising base level causes deposition
 - Lowering base level causes erosion

Building a Dam
Shaping Stream Valleys

• Base Level and Graded Streams
 – A graded stream only transports sediment
 • Has the necessary slope and other channel characteristics to maintain the minimum velocity required to transport the sediment supplied to it
 • No net erosion or deposition of sediment
 – Consider displacement by a fault along a graded stream:
 • Raises a layer of resistant rock
 • Forms a waterfall—concentrates energy here
 • Serves as a temporary base level
 • Called a knickpoint

Changes in Base Level

Shaping Stream Valleys

• Valley Deepening
 – A steep gradient and channel far above base level leads to downcutting of the channel
 • Lowering of the streambed toward base level
 • V-shaped valleys with steep sides are the result of severe downcutting
 • Rapids and waterfalls are prominent features in V-shaped valleys
 – Occur where the stream’s gradient increases significantly

Yellowstone River

The Retreat of Niagara Falls

Niagara Falls ("American" Falls)
Shaping Stream Valleys

- **Valley Widening**
 - As a stream approaches a graded condition, the shape changes to a meandering pattern
 - Downcutting is less dominant
 - More energy is directed laterally (side to side)
 - Continuous erosion from moving meanders produces a floodplain (flat valley floor)
 - The floodplain will be inundated when the stream overflows its banks
 - Erosional floodplain (floodplain is being formed)
 - Depositional floodplain (produced by major fluctuations in base level or climate conditions)

Development of an Erosional Floodplain

Shaping Stream Valleys

- **Incised Meanders and Stream Terraces**
 - **Incised meanders** are meanders flowing through steep, narrow bedrock valleys
 - Meanders first develop on a floodplain
 - Base level drops causing the meanders to start downcutting
 - Once the river has adjusted to the new base level, it will produce a new floodplain below the old one
 - The flat remnants of the old flood plain are called terraces

Incised Meanders

- Before uplift of the Cretaceous Plateau, the river was streamlining as a floodplain.
- During uplift of the plateau, the meanders drowned because of the streamlining process.

Stream Terraces

- **Multiple terraces along the Bow River, Cochrane, Alberta**
Deltas

- Deltas form when sediment-charged streams reach a temporary or ultimate base level and enter a relatively still body of water
 - The stream’s forward velocity decreases, lowering its carrying capacity
 - Sediments are deposited by the dying current and produce three types of beds
 - Foreset beds
 - Topset beds
 - Bottomset beds

Depositional Landforms

- Size of sediment varies in the delta
 - Coarse sediments are deposited close to the river mouth (foreset beds)
 - Fine sediments are deposited at the outer edge of the delta (bottomset beds)
 - As a delta grows outward, the stream’s gradient continually decreases
 - The channel becomes choked with sediment
 - River seeks shorter, steeper routes to base level
 - The main channel divides into several smaller channels in the delta called distributaries

Formation of a Delta

- The Mississippi River Delta
 - History and Structure
 - The Mississippi River Delta is actually a series of seven coalescing deltas
 - Present delta, called a bird-foot delta, formed over the past 500 years
 - The river is trying to cut through to the Atchafalaya River
 - The river would abandon its current course through New Orleans and the lowermost 500 km of its channel
 - Engineering structures currently keep the river from migrating

Growth of the Mississippi River Delta

- Natural Levees
 - Natural levees are raised areas adjacent to the channel formed during flood events
 - Water overtops banks and flows out like a flat sheet, loses velocity instantly and drops coarse material near the banks
 - Fine material is laid out on the valley floor
 - Following a flood event, levees prevent water from returning to the stream channel
 - Poorly drained back swamps form in the flood plain
 - Yazoo tributaries flow in the back swamp area before reaching the main stream channel
Formation of a Natural Levee

Depositional Landforms

- Alluvial Fans
 - Alluvial fans are fan-shaped deposits of sediments at the base of mountain fronts
 - The stream emerges onto a flat lowland, the gradient drops, and sediment is deposited
 - More prevalent in arid climates
 - Mountain streams carry mostly sand and gravel, thus alluvial fans are composed of the same material
 - Fan shape is produced in much the same way as a delta—the flow divides into distributary channels

Alluvial Fan in Death Valley

Floods and Flood Control

- A flood occurs when the stream exceeds the capacity of its channel
 - The most common and most destructive geologic hazard
- Common types of floods:
 - Regional floods
 - Flash floods
 - Ice-jam floods
 - Dam-failure floods

Floods and Flood Control

- Regional floods
 - Seasonal floods that typically result from spring rains or rapid melting of snow
 - Example: 2011 in the Mississippi River

Floods and Flood Control

- Flash floods
 - Occur with little to no warning
 - Produce rapid rises in water levels and can have devastating flow velocities
 - Mountainous areas are extremely susceptible due to steep slopes
 - Example: August 2011 flash floods in upstate New York and Vermont from Hurricane Irene
Flash Floods in Vermont

- **Ice-jam floods**
 - Ice forms in rivers creating dams that will break when temperatures rise
 - Common problem with north-flowing rivers in the northern hemisphere

- **Dam-failure floods**
 - Dams designed to contain small or moderate floods face a larger volume flood event
 - Dams fail and release large amounts of water as a flash flood
 - Example: Johnstown Flood of 1889

North Flowing Siberian Rivers

- **Flood Recurrent Intervals**
 - An estimate of how often a flood of a given size can be expected to occur
 - A “25-year event” would be much smaller but four times more likely to occur than a “100-year flood”
 - “100-year flood” means that there is a 1 percent probability in a given year for a flood of that size
 - Stream gage data must be collected for 20–30 years to make a reasonable calculation

Floods and Flood Control

- **Flood Control**
 - **Artificial levees**
 - Most commonly used stream-containment structures
 - Earth mounds built on river banks to increase the capacity of the channel
 - Not built to withstand, and often fail in floods
 - When exceptional floods threaten, openings are created to divert water out of the channel and into floodways
 - **Channelization**
 - Altering a stream channel to make flow more efficient
 - Can make the stream straighter or deeper
 - Accelerates erosion

Birds Point-New Madrid Floodway
Floods and Flood Control

- Flood Control
 - Flood-control dams
 • Built to store floodwater and release it slowly (in a controlled manner)
 • Typically provide water for irrigation and hydroelectric power
 - Nonstructural approach
 • Best approach to flood control is to limit development within floodplains of high-risk flood areas