1 Planetary "Geology"

Earth 12th Edition - Chapter 24

- 2 Chapter 24 Planetary Geology
- ³ Our Solar System: An Overview
 - The solar system includes:
 - Sun (~99.85 percent of mass of solar system)
 - Eight planets and their satellites
 - Asteroids
 - Comets
 - Meteoroids
- 4 Orbits of the Planets
- 5 Morbits of the Planets

6 Bour Solar System: An Overview

- Nebular Theory: Formation of the Solar System
 - The nebular theory explains the formation of the solar system
 - The Sun and planets formed from a solar nebula (a cloud of interstellar gases and dust)
 - Contracted due to gravity, most of the material collected in the center to form the hot *protosun*
 - Remaining material formed a thick, flattened rotating disk around the protosun

 Repeated collisions of particles in the disk formed planetesimals (asteroid-sized objects)
- 7 Our Solar System: An Overview
 - Nebular Theory: Formation of the Solar System
 - The solar nebula contracted
 - Repeated collision of planetesimals formed protoplanets
 - -Mercury, Venus, Earth, Mars
 - Far from the Sun, ices (water, carbon dioxide, ammonia, methane) also contributed to the formation of planetesimals and protoplanets
 - –Jupiter, Saturn, Uranus, Neptune

8 📕 Our Solar System: An Overview

- The Planets: Internal Structures and Atmospheres
 - Terrestrial planets
 - •"Earth-like," "inner planets"
 - Mercury, Venus, Earth, Mars
 - Jovian planets
 - "Jupiter-like," "outer planets"
 - Jupiter, Saturn, Uranus, Neptune

9 Our Solar System: An Overview

- The Planets: Internal Structures and Atmospheres
 - Internal Structures
 - Early segregation of material by chemical separation led to layering of planets —Terrestrial planets have iron/nickel cores and silicate crusts
 - –Jupiter and Saturn have small iron-rich cores and hydrogen and helium outer layers
 - -Uranus and Neptune have small iron-rich cores, ammonia and methane mantles, and hydrogen and helium outer layers
- 10 Comparing the Internal Structures of the Planets
- 11 Our Solar System: An Overview
 - The Planets: Internal Structures and Atmospheres
 - The Atmosphere of Planets
 - Solar heating and gravity affect the thickness of a planet's atmosphere
 - -Jovian planets have a very thick hydrogen- and helium-rich atmosphere

»Lesser water, methane, ammonia and other hydrocarbons

-Terrestrial planets have a thin atmosphere composed of carbon dioxide, nitrogen, and oxygen

12 Planetary Atmospheres

13 - Our Solar System: An Overview

- Planetary Impacts
 - Impact craters are the result of planetary collisions with massive bodies
 - Meteoroids with masses less than 10 kilograms lose
 - 90 percent of their speed as they pass through Earth's atmosphere
 - Planetary impacts were more common in the early formation of the solar system
 Period of intense bombardment
 - Craters excavated by objects that are several kilometers across often exhibit a central peak
- 14 Formation of an Impact Crater
- 15 El Lunar Crater Euler

16 Earth's Moon: A Chip Off the Old Block

- The Moon is the largest satellite relative to its planet in the solar system
- General characteristics
 - Diameter of 3475 kilometers
 - One-fourth of Earth's diameter
 - -Temperature variations of 107°C to -153°C
 - Density is 3.3 times that of water
 - Gravitational attraction is one-sixth of Earth's

17 Earth's Moon: A Chip Off the Old Block

- How Did the Moon Form?
 - Result of a collision with a Mars-sized asteroid
 - 4.5 billion years ago
 - Earth was semi-molten
 - Debris from collision was ejected into orbit around Earth
 - Particles eventually coalesced into the Moon

18 Earth's Moon: A Chip Off the Old Block

- The Lunar Surface
 - Two types of terrain
 - Maria
 - -Smooth plains of basaltic lava
 - Terrae or Lunar Highlands
 - -Breccias elevated several kilometers above the maria
 - Impact Craters
 - Because the moon has no atmosphere, a 3-meter-wide meteoroid can create a 150meter-wide crater
- 19 Moon
- 20 *Lunar Surface Features*
- 21 Earth's Moon: A Chip Off the Old Block
 - History of the lunar surface
 - Formation of the original crust
 - 4.4 billion years ago, magma ocean began to cool and underwent magmatic differentiation
 - -Dense minerals sank
 - -Less dense silicates floated to the surface
 - »Most common highland rock is anorthosite
 - Excavation of the large impact basins
 - Lunar crust was bombarded by debris

- Frequency of bombardment decreased 3.8 billion years ago
- 22 Formation of lunar maria, stage one:
- 23 Formation of lunar maria
- 24 Large Impact Basins
- 25 20-km wide crater Euler
- 26 Earth's Moon: A Chip Off the Old Block
 - History of the lunar surface
 - Filling of mare basins
 - Maria basalts are 3.0–3.5 billion years old
 - Formation of rayed craters
 - Meteoroid impacts that are younger than maria
 - Rays are lightly colored ejected material
 - -Example: Copernicus crater
- 27 Earth's Moon: A Chip Off the Old Block
 - Today's Lunar Surface: weathering and erosion
 - Lack of atmosphere and flowing water on the Moon
 - Tectonic forces no longer active
 - Erosion is dominated by impacts of tiny particles from space (micrometeorites)
 - Continually bombard surface and mixed upper layer of lunar crust
 - Crust is covered with soil-like lunar regolith
 - -Composed of igneous rocks, breccia, glass beads, and *lunar dust* -Regolith is anywhere from 2 to 20 meters thick
- 28 *Harrison Schmitt*
- 29 Footprint in the Lunar "soil"
- 30 Terrestrial Planets
 - Mercury: The Innermost Planet
 - Innermost and smallest planet
 - Revolves quickly, rotates slowly
 - Greatest temperature extremes in the solar system
 - Absorbs most of the solar radiation it receives
 - Has a magnetic field
 - Hot and fluid core
 - Vast, smooth terrains and heavily cratered terrain
 - Lobate scarps
- 31 Mercury
- 32 E Terrestrial Planets
 - Venus: The Veiled Planet
 - Second to the Moon in brilliance
 - Rotates in the opposite direction as other planets
 - Retrograde motion
 - Rotation is incredibly slow
 - Similar to Earth in size
 - Densest atmosphere of terrestrial planets
 - Atmosphere is 97 percent carbon dioxide
 - Extreme greenhouse effect
 - Surface marked by:
 - Lava flows, craters, and highlands
- 33 Computer generated
 - view of Venus
- 34 📕 Venus
- 35 Elava Flows on Venus
- 36 E Lava Flows on Venus

37 **Terrestrial Planets**

- Mars: The Red Planet
 - Half the diameter of Earth
 - Atmosphere
 - 1 percent as dense as Earth's
 - Primarily carbon dioxide
 - Mean surface temperature variations
 - $\bullet\,{-}140^oC$ at the poles in winter
 - 20°C at the equator in summer
 - Topography
 - Pitted with impact craters filled with dust
 - -Reddish color is due to iron oxide
 - Period of extreme cratering ended 3.8 billion years ago
 - Two-third of the surface is heavily cratered Martian highlands
 - One-third of the surface is younger, lower plains
- 38 Two Hemispheres of Mars

39 Terrestrial Planets

- Mars: The Red Planet
 - Volcanoes on Mars
 - Volcanism prevalent throughout Martian history
 - Olympus Mons—largest volcano in the solar system —Resembles a shield volcano
 - Volcanoes are large because plate tectonics is absent on Mars —Formed by mantle plumes
 - Wind Erosion on Mars
 - Dominant force shaping the Martian surface is wind
 - Dust storms with winds up to 270 kilometer/hour
- 40 Olympus Mons
- 41 *Pathfinder: first geologist on Mars*
- 42 The Valles Marineris canyon system on Mars
- 43 Marce Terrestrial Planets
 - Mars: The Red Planet
 - Water Ice on Mars
 - Ice is found within a meter of the surface poleward of 30 degrees latitude
 - Permanent ice caps are found on the poles
 - -Maximum water ice held there is about 1.5 times the amount covering Greenland • Liquid water once flowed on Mars
 - -Created stream valleys and related features
- 44 Similar Rock Outcrops
- 45 Earth-Like Stream Channels
- 46 Crater wall, water gullies
- 47 Streamlined islands in Ares Valles
- 48 *Terraces and stream channel*
- 49 *Patterned ground: permafrost?*
- 50 Jovian Planets
 - Jupiter: Lord of the Heavens
 - Largest planet
 - 2.5 times more massive than combined mass of all other planets, satellites, and asteroids in the solar system
 - Three main cloud layers
 - Innermost blue-gray layer of water ice

- Middle orange-brown layer of ammonium hydrosulfide droplets
- Outermost white layer of ammonia ice
- Due to immense gravity, Jupiter is shrinking
 - Contraction generates heat that drives atmospheric circulation
 - Dark-colored belts
 - -Cool material is sinking and warming
 - Light-colored zones
 - -Warm material is ascending and cooling
- 51 Jupiter
- 52 Artist's view of Jupiter with the Great Red Spot visible
- 53 Atmospheric structure
- 54 Jovian Planets
 - Jupiter: Lord of the Heavens
 - Great Red Spot
 - Enormous storm
 - –Twice the size of Earth
 - Observed for over 300 years
 - Magnetic field
 - Generated by a liquid metallic hydrogen layer
 - Strongest in the solar system
 - Bright auroras associated with magnetic field
- 55 Jupiter's Aurora

56 Jovian Planets

- Jupiter's Moons
 - Jupiter has 67 moons
 - Four largest moons are the Galilean satellites
 - Ganymede
 - -Has a dynamic core and magnetic field
 - Callisto
 - -Roughly the size of Mercury
 - Io
 - -Most volcanically active body in the solar system
 - Europa
 - -Covered with ice, possibly liquid water under the ice
- 57 📕 Jupiter's Four Largest Moons
- 58 **I**O
- 59 📕 Europa
- 60 Ganymede
- 61 *Callisto*
- 62 Volcanic Eruption on Io
- 63 Jovian Planets
 - Jupiter: Lord of the Heavens
 - Jupiter's Rings
 - Composed of fine, dark particles, similar to smoke particles
 - The main ring is composed of particles believed to be from the surfaces of the two small moons Metis and Adrastea
- 64 Jovian Planets
 - Saturn: The Elegant Planet
 - Similar to Jupiter in atmosphere, composition, and internal structure
 - Atmosphere is 93 percent H and 3 percent He by volume
 - Saturn's Moons
 - 62 known moons

- Titan is Saturn's largest moon
 - -Larger than Mercury
 - -Has a substantial atmosphere
 - -Earth like geologic landforms
 - »Caused by methane "rain"
- 65 *The ring system of Saturn*
- 66 📕 Saturn & moons
- 67 Saturn's Satellites
- 68 📕 Jovian Planets
 - Saturn: The Elegant Planet
 - Saturn's Ring System
 - Composed of small particles (water ice and rocky debris) that orbit the planet
 - Most rings fall into one of two categories based on particle density
 - Thought to be debris ejected from moons
 - -Origin is still being debated
- 69 📕 Saturn's Rings
- 70 Saturn's Ring Moons
- 71 Jovian Planets
 - Uranus and Neptune: Twins
 - Both equal in diameter and bluish in appearance
 - Result of methane in the atmosphere
 - Mantles are water, ammonia, methane
 - Uranus takes 84 Earth years to complete one revolution around the sun
 - Neptune takes 165 Earth years to complete one revolution around the Sun
- 72 Jovian Planets
 - Uranus and Neptune: Twins
 - Uranus: The Sideways Planet
 - Rotates on its side
 - -Due to a large impact
 - Uranus' moons
 - -Moons have varied terrains
 - Uranus' rings
 - -10 sharp-edged rings orbiting the equatorial region

73 📕 Uranus

74 📕 Jovian Planets

- Uranus and Neptune: Twins
 - Neptune: The Windy Planet
 - Dynamic atmosphere
 - -One of the windiest places in the solar system
 - -Large dark spots are short-lived storms
 - Neptune's moons
 - -14 known satellites
 - -Triton is the largest Neptunian moon
 - »Has an atmosphere
 - »Has cryovolcanism—eruptions of water ice, methane ice, and ammonia ice
 - Neptune's rings
 - –Has five rings: two broad and three narrow
- 75 Neptune
- 76 📕 Triton
- 77 Small Solar System Bodies
 - Asteroids: Leftover Planetesimals
 - Asteroids are small bodies

- Left over from the formation of the solar system
 - -Irregular shaped, porous bodies
 - »"piles of rubble"
- Most orbit in the asteroid belt between Mars and Jupiter
 - -Only four asteroids with diameters greater than 400 kilometers
 - -1-2 million asteroids with a diameters greater than
 - 1 kilometer
 - -Some have very eccentric orbits
 - »1000–2000 Earth-crossing asteroids
- 78 Asteroid Belt
- 79 📕 Giant Asteroid Vesta
- 80 *Eros*
- 81 *Eros*

82 - Small Solar System Bodies

- Comets: Dirty Snowballs
 - Comets are also leftover material from the formation of the solar system
 Loose collection of rocky material, dust, water ice, and frozen gases
 - Most reside in the outer reaches of the solar system
 - Take hundreds of thousands of years to orbit the Sun
 - Some short-period comets (orbital period less than 200 years)
 - –Halley's Comet
 - -Comet Holmes
- 83 Comet's Tail

84 📕 Small Solar System Bodies

- Comets: Dirty Snowballs
 - Structure and composition of comets
 - Small central body called a nucleus
 - Escaping gases and dust around the nucleus is the coma
 - As a comet approaches the Sun, most develop a tail that points away from Sun due to: -Radiation pressure
 - -Solar wind

85 Comet Holmes

86 Small Solar System Bodies

- Comets: Dirty Snowballs
 - The realm of comets: The Kuiper belt and Oort cloud
 - The Kuiper belt exists beyond Neptune and contains comets in orbit around the Sun -Halley's Comet originated in the Kuiper belt
 - The Oort cloud consists of comets distributed in all directions from the Sun
 - -Only a tiny fraction of Oort cloud comets come into the inner solar system
- 87 Comet Wild 2

88 Orbits of Kuiper Belt Objects

- 89 Small Solar System Bodies
 - Meteoroids: Visitors to Earth
 - A meteoroid is a small, solid particle
 - Called meteors when they enter Earth's atmosphere
 - Originate from:
 - Interplanetary debris
 - Material ejected from asteroid belt
 - Rocky/metallic remains of a comet
 - Meteor Showers
 - A meteor shower occurs when meteor sightings increase to 60 or more per hour

- -Associated with debris ejected from comets
- Meteoroids large enough to survive passage through Earth's atmosphere originate from the asteroid belt
 - -A few have blasted craters onto Earth's surface
- 90 Meteor Crater

91 Small Solar System Bodies

- Meteoroids: Visitors to Earth
 - Types of meteorites
 - The remains of meteoroids found on Earth are referred to as meteorites
 - Classified by composition
 - –Irons
 - »Aggregates of iron with 5–20 percent nickel
 - -Stony (chondrites)
 - »Silicate minerals with inclusions of other minerals
 - » Carbonaceous chondrite contains organic compounds
 - -Stony-irons
 - »A mixture of stony and iron
- 92 Iron Meteorite
- 93 Iron meteorite found near
 - Meteor Crater, Arizona
- 94 📕 Meteor Crater, Arizona
- 95 Small Solar System Bodies
 - Dwarf Planets
 - Dwarf planets are round and orbit the Sun but are not large enough to sweep debris from their orbital paths
 - Pluto is a dwarf planet
 - -Smaller than Earth's Moon
 - Other dwarf planets include Eris (a Kuiper belt object) and Ceres (largest known asteroid)
- 96 Pluto's Surface
- 97 Swirling Patterns on Pluto
- 98 Relative Sizes of Dwarf Planets
- 99 📕 The End !!!