1 Matter and Minerals

Earth

Chapter 3

2 Minerals: summary in haiku form

"Mineral" defined: natural, inorganic, solid (and two more).

continued...

Also crystalline, chemically specific. There! I fit it in!

3 Figure 3.1

4 Minerals: Building Blocks of Rocks

- Definition of a Mineral:
 - Naturally occurring
 - Generally inorganic
 - Solid substance
 - Orderly crystalline structure
 - Definite chemical composition
- Definition of a Rock:
 - A solid mass of minerals or mineral-like matter that occurs naturally

5 Atoms: Building Blocks of Minerals

- Atoms
 - Smallest particles of matter that cannot be chemically split
 - Composed of:
 - Protons: charge of +1
 - Neutrons: charge of 0
 - Surrounded by electrons: charge of −1
 - -Electrons exist as a cloud of negative charges surrounding the nucleus of protons and neutrons, called principal shells
 - -The outermost shell contains valence electrons, which interact with other atoms to or chemical bonds

6 The Atom

7 Atoms: Building Blocks of Minerals

- Atomic Number
 - The number of protons in the nucleus of an atom
 - Determines the atom's chemical nature
- Element
 - A group of the same kind of atoms
 - Approximately 90 natural elements and several synthesized in a laboratory
 - $-\operatorname{Organized}$ in a periodic table so that those with similar properties line up
 - •
- 8 The Periodic Table
- 9 Why Atoms Bond
 - Chemical Bonding
 - Formation of a compound by combining two or more elements

- Transferring or sharing electrons that allows each atom to attain a full valence shell of electrons
- Octet Rule: Atoms tend to gain, lose, or share electrons until they are surrounded by eight valence electrons

10 Why Atoms Bond

- Ionic Bonding
 - Atoms gain or lose outermost (valence) electrons to form ions (positively and negatively charged atoms).
 - Ionic compounds consist of an orderly arrangement of oppositely charged ions.
 - Ionic bond: the attraction of oppositely charged ions to one another
 - Examples include:
 - Halite (table salt)—NaCl

11 Halite (NaCl)—An Example of Ionic Bonding

12 Composition of Minerals

- Covalent Bonding
 - Atoms share a pair of electrons

13 Composition of Minerals

- Other Types of Bonding:
- Metallic Bonding
 - Valence electrons are free to migrate among atoms
 - Accounts for the high electrical conductivity of metals
- Hybrid Bonds
 - Many chemical bonds are actually hybrids that exhibit some degree of electron sharing and some degree of electron transfer

14 How Do Minerals Form?

- Precipitation of Mineral Matter
 - Ions dissolved in an aqueous solution reach saturation and start forming crystalline solids
 - A drop in temperature or water loss through evaporation can cause ions to reach saturation

15 How Do Minerals Form?

- Crystallization of Molten Rock
 - Similar to water freezing
 - When the magma is hot, the atoms are mobile When the magma cools, the atoms slow and begin to chemically combine
- Deposition as a Result of Biological Process
 - Marine organisms secrete calcium carbonate (CaCO₃)

16 How Do Minerals Form?

17 Physical Properties of Minerals

- Primary Diagnostic Properties
 - Determined by observation or performing a simple test
 - Several physical properties are used to identify hand samples of minerals

18 Physical Properties of Minerals

- Optical Properties
 - Luster
 - Appearance of a mineral in reflected light
 - Two basic categories:
 - Metallic

- Nonmetallic
 - Includes vitreous or glassy luster, dull or earthy luster, pearly luster, silky luster, greasy luster

19 Submetallic and Metallic Luster of

Galena (PbS)

20 Physical Properties of Minerals

- Optical Properties
 - Ability to transmit light
 - Opaque—no light is transmitted
 - Translucent—light, but no image is transmitted
 - Transparent—light and an image are visible through the sample

21 Physical Properties of Minerals

- Optical Properties
 - Color
 - Generally unreliable for mineral identification
 - Often highly variable due to impurities or slight changes in mineral chemistry

22 Color Variations in Minerals

23 Physical Properties of Minerals

- Optical Properties
 - Streak
 - Color of a mineral in its powdered form
 - Not every mineral produces a streak when rubbed across a streak plate

24 Streak Is Obtained on an Unglazed Porcelain Plate

25 Physical Properties of Minerals

- Crystal Shape or Habit
 - Characteristic shape of a crystal or aggregate of crystals

26 Common Crystal Habits

27 Physical Properties of Minerals

- Crystal Shape, or Habit
 - Mineral strength
 - How easily minerals break or deform under stress
 - Tenacity
 - The mineral's resistance to breaking or deforming
 - -Brittle minerals (such as those with ionic bonds) will shatter into small pieces
 - –Malleable minerals (such as those with metallic bonds) are easily hammered into different shapes
 - -Sectile minerals, such as gypsum and talc, can be cut into thin shavings
 - -Elastic minerals, such as the micas, will bend and snap back to their original shape

28 Physical Properties of Minerals

- Crystal Shape, or Habit
 - Hardness
 - Resistance of a mineral to abrasion or scratching
 - All minerals are compared to a standard scale called the Mohs scale of hardness

29

30 Physical Properties of Minerals

- Crystal Shape, or Habit
 - Cleavage
 - Tendency to break along planes of weak bonding
 - Produces smooth, flat surfaces
 - Described by:
 - -Number of planes
 - -Angles between adjacent planes

-Resulting geometric shapes

- 31
- 32 Micas Exhibit Perfect Cleavage

33 Physical Properties of Minerals

- Crystal Shape, or Habit
 - Fracture
 - Absence of cleavage when a mineral is broken
 - -Irregular fractures
 - -Conchoidal fractures
 - -Splintery fractures
 - -Fibrous fractures

34 Irregular Versus Conchoidal Fracture

35 Physical Properties of Minerals

- Density and Specific Gravity
 - Density is defined as mass per unit volume
 - Specific gravity is ratio of the weight of a mineral to the weight of an equal volume of water
 - Most minerals have a specific gravity between 2 and 3
 - •

36 Physical Properties of Minerals

- Other Properties:
 - Taste
 - Halite tastes like salt
 - Feel
 - Talc feels soapy
 - Graphite feels greasy
 - Magnetism
 - Magnetite can be picked up by a magnet
 - Lodestone is a natural magnet
- 37 Rock Salt (halite, NaCl)

38 Physical Properties of Minerals

- Other Properties:
 - Optical properties
 - Calcite has double refraction
 - Reaction to dilute hydrochloric acid
 - Carbonates will effervesce in acid
- 39 Optical Calcite
- 40 Effervescence in HCI

41 Mineral Structures and Compositions

- All mineral samples are crystal or crystalline solids
 - Any natural solid with orderly, repeating internal structures

42 Mineral Structures and Compositions

- Mineral Structures
 - Unit cells
 - Atomic arrangement that results in the basic building blocks of a mineral crystal
 - Minerals can be constructed of the same unit cells and have different external forms
 - Examples of minerals with cubic unit cells include:
 - -Fluorite—crystals are cubes
 - -Magnetite—crystals are octahedrons
 - -Garnets-crystals are dodecahedrons

43 Cubic Unit Cells

44 Mineral Structures and Compositions

- Mineral Structures
 - Steno's Law or Law of Constancy of Interfacial Angles
 - Regardless of crystal size, the angles between equivalent crystal faces of the same mineral are consistent

45 Mineral Structures and Compositions

- Compositional Variations in Minerals
 - Ions of similar size can substitute for one another without disrupting the mineral's internal framework
 - Examples include olivine: (Mg, Fe)SiO₂

46 Mineral Structures and Compositions

- Compositional Variations in Minerals
 - Other minerals have trace variations in their chemical compositions
 - Examples include quartz (SiO₂) and fluorite (CaF₂)
 - The trace variations can significantly influence the mineral's color

47 Mineral Structures and Compositions

- Structural Variations in Minerals
 - Polymorphs
 - Minerals with the same composition but different crystalline structures
 - Examples include diamond and graphite
- Transforming one polymorph into another is called a phase change

48 Diamond Versus Graphite—

Polymorphs of Carbon

49 How Minerals Are Classified

- Nearly 4000 minerals have been named
- Rock-Forming Minerals
 - -Only a few dozen
 - Common minerals that make up most of the rocks of Earth's crust
 - -Composed mainly of the eight elements that make up most of the continental crust

50 The Eight Most Abundant Elements in the Continental Crust

51

52 How Minerals Are Classified

- Classifying Minerals
 - A collection of specimens that exhibit similar internal structure and chemical compositions are called mineral species
 - Mineral species are then further divided into mineral varieties
 - Examples of varieties of quartz
 - -Smoky quartz: contains trace amounts of aluminum
 - -Amethyst: contains trace amounts of iron
- Mineral species are assigned to mineral classes
 - Silicates, carbonates, halides, and sulfates are different mineral classes

53 How Minerals Are Classified

- Silicate Versus Nonsilicate Minerals
 - Silicate minerals are the most common type of minerals
 - Account for >90% of Earth's crust
 - Silicon and oxygen make up the basic building blocks of silicate minerals
 - Nonsilicate minerals are not as common as the silicates but important economically

54 The Silicates

All silicate minerals contain oxygen and silicon—the two most abundant elements in Earth's

crust

- Silicate Structures
 - Silicon—oxygen tetrahedron
 - Fundamental building block
 - Four oxygen ions surrounding a much smaller silicon ion
 - Single tetrahedra are linked together to form various structures

•

55

56 The Silicates

- Silicate Structures
 - Minerals with independent tetrahedra
 - Oxygen ions are bonded with positive ions (such as Mg²⁺, Fe²⁺, Ca²⁺)
 - Examples include:
 - -Olivine
 - -Garnet
 - Form hard, dense equidimensional crystals that lack cleavage

57 The Silicates

- Silicate Structures
 - Minerals with chain or sheet structures
 - Polymerization—the SiO₄ tetrahedra can link to one another in a variety of configurations
 - -Accounts for the high variety of silicate minerals
 - Tetrahedra can form single chains, double chains, and sheet structures
 - -Some oxygen ions are "shared" between tetrahedra

58 The Silicates

- Silicate Structures
 - Minerals with three-dimensional framework
 - All oxygen ions are "shared" between tetrahedra
 - · Examples include:
 - Quartz
 - The feldspars

59

60 The Silicates

- Joining Silicate Structures
 - Most silicate minerals have a net negative charge (except for quartz)
 - Metal ions are required to balance the charge
 - These positive ions bond with unshared oxygen ions in the tetrahedra
 - Most common ions are Fe²⁺, Mg²⁺, K⁺, Na⁺, Al³⁺, Ca²⁺

61 The Silicates

- Joining Silicate Structures
 - Covalent silicon—oxygen bonds are typically stronger than the ionic bonds of the silicate structure
 - Controls the cleavage and hardness of minerals
 - Examples:
 - -Quartz has a three-dimensional framework, is very hard, and lacks cleavage
 - -Talc has a sheet structure framework bonded with Mg ions and is a very soft mineral

62 Common Silicate Minerals

 The feldspars are the most common silicate group and make up more than 50 percent of Earth's crust

- Quartz is the second-most abundant mineral in the continental crust and the only common mineral made completely of silicon and oxygen
- 63 Common Silicate Minerals
- 64 Common Silicate Minerals
 - The Light (Nonferromagnesium) Silicates
 - Generally light in color
 - Have a specific gravity of approximately 2.7
 - Contain varying amounts of aluminum, potassium, calcium, and sodium
 - Lacking iron and magnesium
- 65 Common Silicate Minerals
 - The Light Silicates
 - Feldspar group
 - Most common mineral group
 - Forms under a wide range of temperatures and pressures
 - Exhibit two directions of perfect cleavage at 90 degrees
 - Two most common members:
 - -Orthoclase (potassium feldspar)
 - -Plagioclase (sodium and calcium feldspar)
 - •
- 66 Feldspar Minerals
- 67 Potassium feldspar
- 68 Plagioclase feldspar
- 69 Common Silicate Minerals
 - The Light Silicates
 - Ouartz
 - Only common silicate composed entirely of oxygen and silicon
 - Hard and resistant to weathering
 - Conchoidal fracture
 - Often forms hexagonal crystals
 - Colored by impurities (various ions)
- 70
- 72 Common Silicate Minerals
 - The Light Silicates
 - Muscovite
 - Common member of the mica family
 - Excellent cleavage in one direction
 - Thin sheets are clear
 - -Used as glass during the Middle Ages
 - Produces the "glimmering" brilliance often seen in beach sand

73 Common Silicate Minerals

- The Light Silicates
 - Clay minerals
 - "Clay" is a general term used to describe a variety of complex minerals that have sheet structure
 - Clay makes up a large percentage of soil
 - Most originate as products of chemical weathering
 - Kaolinite is common clay mineral used to manufacture fine china

74 Common Silicate Minerals

- The Dark (Ferromagnesium) Silicates
 - Contain iron and/or magnesium in their structure
 - Generally dark in color
 - Have a specific gravity between 3.2 and 3.6

75 Common Silicate Minerals

- The Dark Silicates
 - Olivine group
 - High-temperature silicates
 - Black to green in color
 - Glassy luster and conchoidal fracture
 - Forms small, rounded crystals

76 **—** 77 **—**

- The Dark Silicates
 - Pyroxene group
 - Important components of dark-colored igneous rocks
 - Augite is the most common mineral in the pyroxene group
 - -Black in color
 - -Two distinctive cleavages at nearly 90 degrees
 - -Dominant mineral in basalt

78 Common Silicate Minerals

- The Dark Silicates
 - Amphibole group
 - Hornblende is the most common mineral in this group
 - Two perfect cleavages exhibiting angles of 120 and 60 degrees

79 Augite and Hornblende

- 80 Hornblende, an amphibole
- 81 Cleavage angles for augite and hornblende
- 82 Common Silicate Minerals
 - The Dark Silicates
 - Biotite
 - Iron-rich member of the mica family
 - Excellent cleavage in one direction
 - Garnet
 - Composed of individual tetrahedra linked by metallic ions (similar to olivine)
 - Glassy luster and conchoidal fracture

83 Important Nonsilicate Minerals

- Divided into groups based on the negatively charged ion or complex ion that the members have in common
- Make up approximately 8 percent of Earth's crust

84

85 Important Nonsilicate Minerals

- Carbonates
 - Composed of the carbonate ion (CO₃²⁻) and a positive ion
 - Two most common carbonates are calcite (CaCO₃) and dolomite CaMg(CO₃)₂
 - Primary constituents in limestone and dolostone

_

86 Important Nonsilicate Minerals

- Many nonsilicate minerals have economic value
 - Examples:
 - Halite (mined for salt)
 - Gypsum (used to make building materials)
 - Hematite and magnetite (mined for iron ore)
 - Native elements (gold, silver, and diamonds)

	_
87	Important Nonsilicate Minerals
88	
89	
90	
91	Native copper
92	
93	
94	
95	End of Chapter