1 Earthquakes

Earth, Chapter 11

2 Earthquakes: summary in haiku form

Built on shaky ground, Memphis, south of New Madrid whole lotta shakin'...

3 What Is an Earthquake?

- An earthquake is ground shaking caused by the sudden and rapid movement of one block of rock sliding past another
 - Rocks slide past one another along fractures in the crust called faults
 - Most earthquakes occur along preexisting faults

4 What Is an Earthquake?

- Earthquake
 - Rock slippage originates in the ground at the focus or hypocenter
 - Stored up energy is released as seismic waves that radiate in all directions from the focus
 - The epicenter is the point on the ground surface directly above the focus

5 Earthquake focus and epicenter

6 7

8 What Is an Earthquake?

- Discovering the Causes of Earthquakes
 - Massive landslides, meteorites, and volcanic eruptions produce weak earthquakes
 - Over tens to hundreds of years, stress builds up from plate movement. Eventually, stress along the fault overcomes the frictional resistance, and slip initiates as the rocks break
 - The deformed rocks "snap back" to their original position in a process called elastic rebound

9 Displacement Along a Fault

10

11

12 What Is an Earthquake?

- · Aftershocks and Foreshocks
 - Numerous small earthquakes, called aftershocks, usually follow a major earthquake
 - Aftershocks diminish in frequency and intensity in the months following
 - Although weaker than the main event, aftershocks can cause severe damage to already weakened structures
 - Foreshocks are minor earthquakes that sometimes precede a major earthquake by days, weeks, or months

--

13 Faults and Earthquakes

- Types of faults
 - There are three major types of faults
 - Normal—associated with divergent plate boundaries
 - Reverse and thrust—associated with convergent plate boundaries
 - In a subduction zone, the boundary between the subducting and overlying plate is called a megathrust fault

»Produce most of Earth's powerful earthquakes

- Strike-slip—large faults associated with transform plate boundaries
 - -Small strike-slip faults associated with divergent plate boundaries

14

15

17 Faults and Earthquakes

- Types of Faults
 - San Andreas is the most studied fault system in the world
 - Some portions exhibit slow, gradual displacement known as fault creep
 - Other segments regularly slip, producing small earthquakes
 - Other segments remain stuck and store elastic energy for a few hundred years before they break loose, resulting in a major earthquake
 - -Process described as stick-slip motion
 - -Great earthquakes should occur about every 50 to 200 years along these sections

18 Faults and Earthquakes

- Fault Rupture and Propagation
 - Most faults are locked except for brief, abrupt movements
 - Faults do not slip all at once
 - Initial slip begins at hypocenter and propagates along the fault surface
 - Slippage adds strain to adjacent sections triggering more slippage
 - Slippage mainly travels in one direction
 - Fault slip is the amount of displacement on the fault surface

- ...

- 19 Fault Propagation
- 20 Fault Propagation
- 21 Fault Propagation

22

- 23 Displacement produced by the 1906 San Francisco earthquake
- 24 Seismology: The Study of Earthquake Waves
 - · Seismology is the study of earthquake waves
 - Earliest studies of earthquake waves date back almost 2000 years to the Chinese

25

26 Seismologist

one who studies the shaking of Earth

- 27 Seismology: The Study of Earthquake Waves
 - Instruments That Record Earthquakes
 - Seismographs record the movement of Earth in relation to a stationary mass on a rotating drum or magnetic tape
 - More than one type of seismograph is needed to record horizontal and vertical ground movement

28 = 29 = =

30 Seismograph designed to record vertical ground motion

31 Seismographs

32

- · Seismic Waves
 - Records obtained are called seismograms
 - Types of seismic waves
 - Surface waves travel in the rock layers just below Earth's surface
 - · Body waves travel through Earth's interior
 - -Primary (P) waves are compression waves
 - »Can travel through all materials
 - -Secondary (S) waves are shear waves
 - »Can only travel through solid material

33 Body Waves Versus Surface Waves

The Characteristic Motion of P Waves and S Waves

35 36

37

- Seismic Waves
 - Surface waves
 - Two general directions of motion
 - -One causes the ground to move up and down, similar to the movement of ocean waves
 - -The second causes the ground to move side to side
 - »Causes the greatest destruction

Two Types of Surface Waves

- Seismic Waves
 - Body waves versus surface waves
 - P waves are the first to arrive at a recording station, but have the lowest amplitude
 - S waves are the second to arrive at a recording station
 - Surface waves have the lowest velocity, are the last to arrive at a recording station, and have the highest amplitude
 - -Surface waves cause the greatest property damage
- 42 Primary (P) waves
- 43 Secondary (S) waves
- 44 Earthquake Waves
- 45 Locating the source of earthquakes
 - Terms:
 - **Focus**
 - the place within Earth where earthquake waves originate
 - **■** *Epicenter*
 - location on the surface directly above the focus
 - Epicenter is located using the difference in velocities of P and S waves

46 Locating the source of earthquakes

- Locating the epicenter of an earthquake
 - ■Three station recordings are needed to locate an epicenter
 - ■Each station determines the time interval between the arrival of the first P wave and the first S wave at their location
 - ■A travel-time graph is used to determine each station's distance to the epicenter
- 47 A seismogram records
 - wave amplitude vs. time
- 48 Locating the source of earthquakes

- Locating the epicenter of an earthquake
 - MA circle with a radius equal to the distance to the epicenter is drawn around each station
 - ■The point where all three circles intersect is the earthquake epicenter
- 49 A travel-time graph is used to find the distance to the epicenter

50

51 Epicenter is located using three or more seismographs

52

53 Locating the source of earthquakes

- Earthquake belts
 - About 95 percent of the energy released by earthquakes originates in a few relatively narrow zones that wind around the globe
 - Major earthquake zones include:
 - the Circum-Pacific belt
 - Mediterranean Sea region to the Himalayan complex
 - the oceanic ridge system

54 Distribution of magnitude 5 or greater earthquakes, 1980 - 1990

55

56 Locating the source of earthquakes

- Earthquake depths
 - Earthquakes originate at depths ranging from 5 to nearly 700 kilometers
 - **■**Earthquake foci arbitrarily classified as:
 - *shallow (surface to 70 kilometers)
 - intermediate (between 70 and 300 kilometers)
 - *deep (over 300 kilometers)

57 Locating the source of earthquakes

- Earthquake depths
 - ■Definite patterns exist
 - Shallow focus occur along the oceanic ridge system
 - ◆Almost all deep-focus earthquakes occur in the circum-Pacific belt, particularly in regions situated landward of deep-ocean trenches

Relationship of earthquake depth to subduction zones

59 Determining the Size of Earthquakes

- Two measurements are used to describe the size of an earthquake
 - Intensity: a measure of the degree of earthquake shaking at a given locale based on the amount of damage
 - Magnitude: an estimate of the amount of energy released at the source of the earthquake

60 Measuring the size of earthquakes

- Magnitude scales
 - **■** Richter magnitude
 - concept introduced by Charles Richter in 1935
 - Richter scale
 - ◆Based on the amplitude of the largest seismic wave recorded
 - •Accounts for the decrease in wave amplitude with increased distance

61 Determining the Size of Earthquakes

- Intensity scales
 - The Modified Mercalli Intensity scale was developed using California buildings as its standard
 - · Based on property destruction in a region
 - Values change based on the distance from the epicenter
 - The drawback of intensity scales is that destruction may not be a true measure of the earthquake's actual severity

- 62 Modified Mercalli Intensity Scale
- 63 Seismic Intensity Map, Loma Prieta 1989
- 64 Determining the Size of Earthquakes
 - Magnitude scales
 - Richter magnitude
 - Concept introduced by Charles Richter in 1935
 - The Richter scale is calculated by measuring the amplitude of the largest seismic wave recorded on a seismogram
 - -Logarithmic scale that accounts for the decrease in wave amplitude with increased distance
 - -Magnitudes less than 2.0 are not felt by humans
 - Each unit of Richter magnitude increase corresponds to a tenfold increase in wave amplitude and a 32-fold energy increase
- 65 Santa Clara County Richter Scale
- 66 Determining the Richter Magnitude of a Quake
- 67 Determining the Size of Earthquakes
 - Magnitude Scales
 - Moment magnitude measures the total energy released during an earthquake
 - Calculated by the average amount of slip on the fault, the area of the fault surface that slipped, and the strength of the faulted rock
 - Can also be calculated by modeling data from seismograms
- 68 Richter Scale of Earthquake Magnitude
- 69 Annual Occurrence of Earthquakes with Various Magnitudes
- 70 Earthquake destruction
 - Amount of structural damage attributable to earthquake vibrations depends on:
 - *Intensity* and *duration* of the vibrations
 - ■Nature of the *material* upon which the structure rests
 - **■** Design of the structure
- 71 Earthquake destruction
 - Destruction from seismic vibrations
 - ■Ground shaking
 - Regions within 20 to 50 kilometers of the epicenter will experience about the same intensity of ground shaking
 - However, destruction varies considerably mainly due to the nature of the ground on which the structures are built
- 72 Damage caused by the 1964 Anchorage, Alaska earthquake
- 73 Earthquake Destruction
 - Destruction from Seismic Vibrations
 - Amplification of seismic waves
 - Soft sediments amplify seismic waves more than solid bedrock
 - Liquefaction is the process where loosely packed, waterlogged sediments behave as a fluid during the intense shaking of an earthquake
- 74 Liquefaction
- 75 Earthquake Destruction
 - Destruction from Seismic Vibrations
 - Seiches
 - Rhythmic sloshing of water in lakes, reservoirs, and enclosed basins
 - Can be dangerous to small watercraft or if the sloshing causes water to spill over the dams of reservoirs
 - Landslides
 - Hebgen Lake quake, 1959, M 7.5
 - Landslide buried Forest Service Campground, killing 26 campers

- Quake Lake created by landslide
- 76 Damage caused by the 1959 Hebgen Lake, Montana earthquake
- 77 Damage caused by the 1959 Hebgen Lake, MT earthquake
- 78 Damage caused by the 1959 Hebgen Lake, Montana earthquake
- 79 Damage caused by the 1959 Hebgen Lake, Montana earthquake
- 80 Damage caused by the 1959 Hebgen Lake, Montana earthquake
- 81 Turnagain Heights Slide Caused by the 1964 Alaskan Earthquake
- 82 Earthquake Destruction
 - What Is a Tsunami?
 - A tsunami is a series of large ocean waves
 - Most are generated by displacement from a megathrust fault
 - In open water, the wave amplitude is less than 1 meter and the wavelength can be larger than 700 meters
 - Close to shore, the water "piles up" and some tsunamis can exceed 30 meters in height

83 Tsunami Generated by Displacement of the Ocean Floor

84 Earthquake Destruction

- · What Is a Tsunami?
 - Tsunami damage from the 2004 Indonesian earthquake
 - The tsunami was caused by an undersea earthquake near Sumatra and is one of the deadliest natural disasters

85 Tsunami Generated Off the Coast of Sumatra, 2004

86 Earthquake Destruction

- What Is a Tsunami?
 - Japan tsunami
 - The tsunami generated from the 2011 Tohoku earthquake was 40 meters high and a Pacific-wide event, affecting not only Japan but also the west coast of North America

87 Japan Tsunami

88 Earthquake Destruction

- · What Is a Tsunami?
 - Tsunami warning system
 - Observations in the Pacific Ocean allow scientists to track tsunamis and issue appropriate warnings to affected areas
 - -Seismic observatories report large earthquakes to the Tsunami Warning Center
 - A series of deep-water buoys in the Pacific Ocean detect energy released by earthquakes
 - -Tidal gauges measure sea level rise and fall

89 Earthquake Destruction

- 90 Tsunami Travel Times
- 91 Earthquake Belts and Plate Tectonics
 - 95 percent of energy released from earthquakes originates along the circum-Pacific belt
 - Most earthquakes occur along megathrust faults of convergent plate boundaries

92 Earthquake Belts and Plate Tectonics

- The Alpine-Himalayan belt is another region of strong earthquakes
 - Tectonic activity is attributed to the collision of the African and Indian Plates with the Eurasian Plate
- · Divergent plate boundaries are associated with frequent but weak seismic activity

93 Earthquake Belts

94 Can Earthquakes Be Predicted?

Short-Range Predictions

- The goal is to provide a warning of the location and magnitude of a large earthquake within a narrow time frame
- Research has concentrated on monitoring possible precursors of major earthquakes:
 - Monitor changes in ground elevation
 - · Measure strain in the rocks
 - Measure changes in groundwater level
 - Frequency of foreshocks

95 Can Earthquakes Be Predicted?

- Short-Range Predictions
 - Must have a small range of uncertainty in regards to location and timing
 - Must produce few failures and false alarms
 - Currently, no reliable methods exist for making short-range earthquake predictions

96 Can Earthquakes Be Predicted?

- · Long-Range Forecasts
 - Give the probability of earthquakes of a certain magnitude occurring on a time scale of 30 to 100 years (or more)
 - Useful guide for building codes
 - -Example: Building the Trans-Alaskan Pipeline over the Denali Fault
- 97 Trans-Alaskan Oil Pipeline
- 98 Can Earthquakes Be Predicted?
 - Long-Range Forecasts
 - Seismic gaps are tectonically quiet zones along a fault where strain is currently building up
 - The stored strain will be released in a future earthquake
 - Paleoseismology is the study of prehistoric earthquakes
 - By digging a trench across a fault zone, scientists look for evidence of ancient faulting (mud volcanoes and offset sedimentary strata)
- 99 Seismic Gaps: Tools for Forecasting Earthquakes
- Paleoseismology: The Study of Prehistoric Earthquakes
- 101 Mid-continent Earthquakes:

Life NOT on the Edge

- 102 Earthquake Hazards in the U.S.
- 103 Way back in 1811 and 1812...

104

- 105 Waves on the Mississippi
- 106 1811 1812 estimated magnitudes
- 107 Intensity Map for 1811 1812
- 108 Relative Earthquake

Energy Transfer:

- 109 **t**
- 110 **t**
- 111 **1811 1812 estimated magnitudes**
- 112 Memphis
- 113 AutoZone HQ, Memphis
- 114 The Sterick Building, Memphis

Completed in 1930, repainted in 1960's, vacant since 1980's

(NOT quake-code compliant)

- 115 The St. Louis Arch
 - Completed in 1965, brought down in 20??
- 116 Earthquake Survival Kit

do you know where yours is?

117 End of Chapter