Divergent Boundaries: Origin and Evolution of the Ocean Floor

Earth, 11th Edition, Chapter 13

Divergent Boundaries: summary in haiku form
Undersea mountains
forty-some thousand miles long
nothing but basalt.

Key Concepts
- The nature of the ocean floor.
- Continental margins.
- Deep-ocean basins.
- Oceanic crust, oceanic lithosphere and oceanic ridges.
- Continental rifting: Creation of new ocean basins.
- Destruction of oceanic lithosphere and the "supercontinent cycle."

An Emerging Picture of the Ocean Floor
- Mapping the Seafloor
 - From 1872–1876, the HMS Challenger collected oceanographic data
 - Measured the depth to the sea-floor by lowering weighted lines overboard
 - Deepest spot measured is now called the Challenger Deep

Echo Sounder
- Modern bathymetric techniques
 - The topography (shape) of the ocean floor is called bathymetry
 - Sonar, using sound energy, is now used to measure the depth to the ocean floor
 - Early bathymetric profiles were created using echo sounders, which bounce a sound off an object to determine the distance

Sidescan and Multibeam Sonar
- Modern bathymetric techniques
 - Sidescan sonar images a horizontal region above the seafloor
 - High-resolution multibeam instruments send out a fan of sound and record reflections from various receivers to provide a more detailed view of the ocean floor
 - Only about 5 percent of the sea floor has been mapped in detail

Satellite Altimeter
- Mapping the Seafloor
 - Massive underwater structures exert stronger than normal gravitational attraction
 - Water piles up over these features
 - Satellite radar altimeters can detect changes in elevation of the ocean surface

An Emerging Picture of the Ocean Floor
- Provinces of the Ocean Floor
 - Three major areas of the ocean floor based on topography
 - Continental margins
 - Outer margins of the continents and the transition to oceanic crust
 - Deep ocean basins
 - Between the continental margins and the oceanic ridge
 - Oceanic ridges
 - A broad, linear swell at a divergent plate boundary
Major Topographic Divisions of the North Atlantic

Continental Margins
- Passive Continental Margins
 - Found along most coastal areas that surround the Atlantic Ocean
 - Not associated with plate boundaries
 - Experience little volcanism and few earthquakes

Continental Margins
- Passive Continental Margins
 - A continental shelf is a gently sloping, flooded portion of the continent
 - Varies greatly in width
 - Gently sloping
 - Contains important mineral and oil deposits
 - Some areas contain extensive glacial deposits
 - Important fishing grounds

Continental Margins
- Passive Continental Margins
 - A continental slope is a steep structure that marks the boundary between the continental and oceanic crust
 - Inclination varies but on average is 5 degrees
 - The slope in some areas is as high as 25 degrees

Continental Margins
- Passive Continental Margins
 - A continental rise is a thick accumulation of sediment from the continental slope
 - These sediments are typically carried by turbidity currents (mixtures of sediment and water) down submarine canyons
 - When a turbidity current emerges onto the relatively flat ocean floor, the sediments spread out in a fan shape called a deep-sea fan
 - The continental rise is composed of multiple deep-sea fans

Active Continental Margin
- Where the oceanic lithosphere is being subducted beneath the continent
 - Often associated with deep-ocean trenches
 - Located primarily around the Pacific Ocean

Continental Margins
- Active Continental Margins
 - Sediments and rocks can be scraped from the descending plate and accumulate on the continental plate as an accretionary wedge
 - Subduction erosion occurs when the subducting plate scrapes the bottom of the overriding plate
 - Effective when the angle of descent is steep

Active Continental Margin
- Features of the Deep-Ocean Basin
 - Features include:
 - Deep-ocean trenches
 - Abyssal plains
 - Seamounts and guyots
 - Oceanic plateaus
Features of the Deep-Ocean Basin
- Deep-Ocean Trench
 - Long narrow creases that represent the deepest part of the seafloor
 - Challenger Deep, in Mariana trench, is the deepest spot in the ocean (10,994 meters below sea level)
 - Surface expression of a subduction zone
 - Associated with volcanic activity
 - Volcanic island arcs
 - Continental volcanic arcs
 - Mostly found in the Pacific Ocean

The Challenger Deep

Features of the Deep-Ocean Basin
- Abyssal Plains
 - Flat features of the ocean floor
 - Likely the most level places on Earth
 - Sites of thick accumulations of sediment
 - Fine sediments from turbidity currents
 - Minerals precipitated from seawater
 - Shells of marine plankton
 - Found in all oceans
 - Most extensive in the Atlantic Ocean

Seismic Reflection Profile of the Ocean Floor

Features of the Deep-Ocean Basin
- Volcanic Structures on the Ocean Floor
 - Seamounts and volcanic islands
 - Submarine volcanoes are called seamounts
 - Over a million seamounts exist
 - Found in all ocean floors but most common in the Pacific
 - Many form near oceanic ridges or over a hot spot
 - A seamount may grow large enough to emerge as a volcanic island
 - Examples include Easter Island, Tahiti, Bora Bora, and the Galapagos Islands
 - Guyots
 - Submerged, flat-topped seamounts
 - After the volcano is extinct, it eventually erodes to sea level where waves flatten the top of the structure
 - As plates carry the structure away, it eventually lowers into the ocean
 - Oceanic plateaus
 - Vast outpourings of basaltic lavas on the ocean floor

Anatomy of the Oceanic Ridge
- An oceanic ridge, or mid-ocean ridge, or rise is a broad, linear swell along a divergent plate boundary
 - The longest topographic feature on Earth
 - Occupy elevated positions
 - Segments are offset by transform faults
 - Extensive faulting and earthquakes
 - A rift valley (a deep, down-faulted structure) exists on the axis of most ridges
Distribution of the Oceanic Ridge System

Oceanic Ridges and Seafloor Spreading
- Seafloor Spreading
 - This concept was formulated in the early 1960s by Harry Hess
 - Seafloor spreading occurs along the crests of oceanic ridges
 - Newly formed melt (from decompression melting of the mantle) slowly rises toward the surface
 - Most melt solidifies in the lower crust, but some escapes to the sea floor and erupts as lava

Oceanic Ridges and Seafloor Spreading
- Why Are Ocean Ridges Elevated?
 - Newly created lithosphere is hot and less dense than surrounding rocks
 - As the newly formed crust moves away from the spreading center, it cools and increases in density

Oceanic Ridges and Seafloor Spreading
- Spreading Rates and Ridge Topography
 - Oceanic ridges with slow spreading rates have well-developed rift valleys and rugged topography
 - Oceanic ridges with intermediate spreading rates have subdued rift valleys and topography
 - Oceanic ridges with fast spreading rates generally do not have a rift valley and have a shallow profile

Topography of Slow and Fast Spreading Centers

The Nature of Oceanic Crust
- Four Distinct Layers
 - The sequence of four layers composing the oceanic crust is called an ophiolite complex
 - Layer 1—consists of deep sea sediments and sedimentary rocks
 - Layer 2—consists of pillow basalts
 - Layer 3—consists of numerous interconnected dikes called sheet dikes
 - Layer 4—consists of gabbro

Ophiolite Complex: Layers of Oceanic Crust

The Nature of Oceanic Crust
- How Does Oceanic Crust Form?
 - Basaltic magma originates from partially melted mantle peridotite
 - The magma rises through the upper mantle in tiny cracks until it reaches a lens-shaped magma chamber beneath the ridge crest
 - As the pressure in the chamber increases, the rock about the chamber periodically fractures

The Nature of Oceanic Crust
- How Does Oceanic Crust Form?
 - Magma ascends through these fractures, cools, and solidifies to form a sheeted dike complex
 - 10–20 percent of the magma reaches the seafloor, where it quickly solidifies, forming large tube-shaped protuberances known as pillow basalts

Erupting Pillow Lava

The Nature of Oceanic Crust
- Interactions Between Seawater and Oceanic Crust
 - Permeable and highly fractured crust allows seawater to penetrate the crust by 2–3 kilometers
 - Seawater is heated as it circulates through the crust, altering the basalt by hydrothermal metamorphism
- Hot groundwater dissolves ions of various metals from the rock and precipitates them on the seafloor as particle-filled clouds called black smokers.

Continental Rifting—The Birth of a New Ocean Basin

- Evolution of an Ocean Basin
 - A new ocean basin begins with the formation of a continental rift (an elongated depression where the lithosphere is stretched and thinned)
 - When the lithosphere is thick and cold, rifts are narrow
 - Examples include the East African Rift, the Rio Grande Rift, the Baikal Rift, and the Rhine Valley
 - When the lithosphere is thin and hot, the rift can be very wide
 - Examples include the Basin and Range in the western United States

Continental Rifting—The Birth of a New Ocean Basin

- East African Rift
 - Continental rift extending through eastern Africa
 - Consists of several interconnected rift valleys
 - Normal faulting led to grabens (down-faulted blocks)
 - Area has expensive basaltic flows and volcanic cones

East Africa Rift Valley

Continental Rifting—The Birth of a New Ocean Basin

- Evolution of an Ocean Basin
 - Red Sea
 - Formed when the Arabian Peninsula rifted from Africa beginning about 30 million years ago
 - Fault scarps surrounding the Red Sea are similar to structures seen in the East African Rift
 - If spreading continues, the Red Sea will grow wider and develop an elongated mid-ocean ridge

Continental Rifting—The Birth of a New Ocean Basin

- Atlantic Ocean
 - After tens of millions of years, the Red Sea will develop into a feature similar to the Atlantic Ocean
 - As new oceanic crust was added to the diverging plates, the rifted margins moved further from the region of upwelling
 - These margins cooled and subsided below sea level

Formation of an Ocean Basin

Continental Rifting—The Birth of a New Ocean Basin

- Evolution of an Ocean Basin
 - Interrupted rifting
 - A fail rift valley extends from Lake Superior into Kansas
 - Formerly active rift valley is filled with basalt and clastic sedimentary rocks
 - Why rifts fail or succeed is not fully understood

Midcontinent Rift

Continental Rifting—The Birth of a New Ocean Basin

- Mechanisms for Continental Rifting
 - The supercontinent cycle is the formation and dispersal of supercontinents
• Two supercontinents have existed in the geologic past
 - Pangaea—most recent
 - Rodinia
 • Involves major changes in the direction and nature of the forces that drive plate motion

49 Continental Rifting—The Birth of a New Ocean Basin
• Mechanisms for Continental Rifting
 - Mantle plumes and hot spots
 • Regions of hotter than normal mantle rise, experience decompression melting, create
 basalts that triggers hot-spot volcanism on the surface
 - Mantle plumes concentrate under the thick continental crust, which traps heat in the
 mantle
 - Hot mantle plumes eventually cause the overlying crust to dome and weaken
 » Flood basalts can precede a rifting event

The Possible Role of Mantle Plumes in the Breakup of Pangaea

Continental Rifting—The Birth of a New Ocean Basin
• Mechanisms for Continental Rifting
 - Mantle plumes and hot spots
 • Doming of the crust can produce three rifts that join in the area above the rising mantle
 plume called a triple junction
 - Continental rift usually occurs along two of the arms
 » The third arm becomes a failed rift
 • Mantle plumes do not always lead to rifting
 - Example: Columbia River Basalts in the Pacific Northwest

Continental Rifting—The Birth of a New Ocean Basin
• Mechanisms for Continental Rifting
 - Role of tensional stress
 • When the crust is thin and hot, small stresses are sufficient to initiate spreading
 - Example: Basin and Range region
 • Slab pull from subducting plates can create sufficient tensional stress to initiate rifting
 the Pacific Northwest

Destruction of Oceanic Lithosphere
• Why Oceanic Lithosphere Subducts
 - Fate of oceanic crust is still debated
 • Pile up at the boundary between the upper and lower mantle
 • Subduct to the core-mantle boundary
 - Overall density must be greater than underlying asthenosphere

Destruction of Oceanic Lithosphere
• Why Oceanic Lithosphere Subducts
 - Spontaneous subduction
 • Very old, thick, dense lithosphere sinks to the mantle by its own weight
 • Results in descending angles of nearly 90 degrees
 - Example: Mariana trench
 • Lithospheric mantle is what drives subduction

The Angle of Plate Subduction Depends on Its Density

Destruction of Oceanic Lithosphere
• Why Oceanic Lithosphere Subducts
 - Forced subduction
 • Younger, less dense lithosphere is forced beneath the overlying plate by compressional
forces
 • Descends at shallow angles
 - Example: Peru-Chile trench

57 **Destruction of Oceanic Lithosphere**
 • Subducting Plates: the Demise of Ocean Basins
 - If a plate subducts faster than it is produced at a spreading center, the plate will get smaller until it completely subducts
 • Example: Farallon Plate

58 **The Demise of the Farallon Plate**

59

60 **Convection and Tectonics**

61 **Forming a Divergent Boundary**

62 **Stay tuned for more on plate tectonics...**