Chapter Overview

- Marine sediments contain a record of Earth history.
- Marine sediments provide many important resources.
- Marine sediments have origins from a variety of sources.

Marine Sediments

- Provide clues to Earth history
 - Marine organism distribution
 - Ocean floor movements
 - Ocean circulation patterns
 - Climate change
 - Global extinction events

Marine Sediments

- Texture—size and shape of particles
- Sediment origins
 - Worn rocks
 - Living organisms
 - Minerals dissolved in water
 - Outer space
- Sediments lithify into sedimentary rock

Approaching the bottom (Alvin)
Marine Sediment Collection

- Early exploration used dredges.
- Modern exploration
 - Cores – hollow steel tube collects sediment columns
 - Rotary drilling – collects deep ocean sediment cores

Marine Sediment Collection

- National Science Foundation (NSF) – formed Joint Oceanographic Institutions for Deep Earth Sampling (JOIDES) in 1963
 - Scripps Institution of Oceanography
 - Rosenstiel School of Atmospheric and Oceanic Studies
 - Lamont-Doherty Earth Observatory of Columbia University
 - Woods Hole Oceanographic Institution

Marine Sediment Collection

- Deep Sea Drilling Project (DSDP) – 1968
 - Glomar Challenger drilling ship
 - Core collection in deep water
 - Confirmed existence of sea floor spreading
 - Ocean floor age
 - Sediment thickness
 - Magnetic polarity

Marine Sediment Collection

- DSDP became Ocean Drilling Project (ODP) in 1983
 - JOIDES Resolution replaced Glomar Challenger
- Integrated Ocean Drilling Program (IODP)
 - Replaced ODP in 2003
 - Chikyu – new exploration vessel in 2007
 - Expedition to Japan Trench after 2011 earthquake

Paleoceanography and Marine Sediments

- Paleoceanography
 - Study of how ocean, atmosphere, and land interactions have produced changes in ocean chemistry, circulation, biology, and climate
- Marine sediments provide clues to past changes.
Marine Sediment Classification

- Classified by origin
- Lithogenous – derived from land
- Biogenous – derived from organisms
- Hydrogenous or Authigenic – derived from water
- Cosmogenous – derived from outer space

Lithogenous Sediments

- Eroded rock fragments from land
- Also called terrigenous
- Reflect composition of rock from which derived
- Produced by weathering
 - Breaking of rocks into smaller pieces

Lithogenous Sediments

- Small particles eroded and transported
- Carried to ocean
 - Streams
 - Wind
 - Glaciers
 - Gravity
- Greatest quantity around continental margins

Relationship of fine-grained quartz and prevailing winds

Lithogenous Sediment Transport
Lithogenous Sediments

- Reflect composition of rock from which derived
- Coarser sediments closer to shore
- Finer sediments farther from shore
- Mainly mineral quartz (SiO₂)

Hawaiian Green Sand
Figure 4.4c

Grain Size

- One of the most important sediment properties
- Proportional to energy of transportation and deposition
- Classified by Wentworth scale of grain size

Figure 4.4d

Grain Size

- One of the most important sediment properties
- Proportional to energy of transportation and deposition
- Classified by Wentworth scale of grain size

Wentworth Scale of Grain Size

- Larger particles closer to shore

Texture and Environment

- Texture indicates environmental energy
 - High energy (strong wave action) – larger particles
 - Low energy – smaller particles
- Larger particles closer to shore
Sorting

- Measure of grain size uniformity
- Indicates selectivity of transportation process
- Well-sorted – all same size particle
- Poorly sorted – different size particles mixed together

Sediment Distribution

- **Neritic**
 - Shallow-water deposits
 - Close to land
 - Dominantly lithogenous
 - Typically deposited quickly
- **Pelagic**
 - Deeper-water deposits
 - Finer-grained sediments
 - Deposited slowly

Neritic Lithogenous Sediments

- **Beach deposits**
 - Mainly wave-deposited quartz-rich sands
- **Continental shelf deposits**
 - Relict sediments
- **Turbidite deposits**
 - Graded bedding
- **Glacial deposits**
 - High-latitude continental shelf
 - Currently forming by ice rafting

Pelagic Deposits

- Fine-grained material
- Accumulates slowly on deep ocean floor
- Pelagic lithogenous sediment from
 - Volcanic ash (volcanic eruptions)
 - Wind-blown dust
 - Fine-grained material transported by deep ocean currents

Pelagic Deposits

- **Abyssal Clay**
 - At least 70% clay sized particles from continents
 - Red from oxidized iron (Fe)
 - Abundant if other sediments absent
Biogenous Sediment

- Hard remains of once-living organisms
- Two major types:
 - **Macroscopic**
 - Visible to naked eye
 - Shells, bones, teeth
 - **Microscopic**
 - Tiny shells or tests
 - Biogenic ooze
- Mainly algae and protozoans

Biogenous Sediment Composition

- Two most common chemical compounds:
 - Calcium carbonate (CaCO₃)
 - Silica (SiO₂ or SiO₂·nH₂O)

Silica in Biogenous Sediments

- **Diatoms**
 - Photosynthetic algae
 - Diatomaceous earth
- **Radiolarians**
 - Protozoans
 - Use external food

Silica in Biogenous Sediments

- **Tests** – shells of microscopic organisms
- Tests from diatoms and radiolarians generate siliceous ooze.
Diatomaceous Earth

- Siliceous ooze lithifies into diatomaceous earth.
- Diatomaceous earth has many commercial uses.

Calcium Carbonate in Biogenic Sediments

- Coccolithophores
 - Also called nanoplankton
 - Photosynthetic algae
 - Coccoliths — individual plates from dead organism
 - Rock chalk
 - Lithified coccolith-rich ooze

Calcium Carbonate in Biogenic Sediments

- Foraminifera
 - Protozoans
 - Use external food
 - Calcareous ooze

Distribution of Biogenous Sediments

- Depends on three processes:
 - Productivity
 - Number of organisms in surface water above ocean floor
 - Destruction
 - Skeletal remains (tests) dissolve in seawater at depth
 - Dilution
 - Deposition of other sediments decreases percentage of biogenous sediments

Pelagic Deposits

- Siliceous ooze
- Accumulates in areas of high productivity
- Silica tests no longer dissolved by seawater when buried by other tests

Neritic Deposits

- Dominated by lithogenous sediment, may contain biogenous sediment
- Carbonate Deposits
 - Carbonate minerals containing CO₃
 - Marine carbonates primarily limestone
 - CaCO₃
 - Most limestones contain fossil shells
 - Suggests biogenous origin
 - Ancient marine carbonates constitute 25% of all sedimentary rocks on Earth.
Carbonate Deposits
- **Stromatolites**
 - Fine layers of carbonate
 - Warm, shallow-ocean, high salinity
 - Cyanobacteria
- Lived billions of years ago
- Modern stromatolites live near Shark Bay, Australia

Calcareous Ooze
- **CCD** – Calcite compensation depth
 - Depth where CaCO₃ readily dissolves
 - Rate of supply = rate at which the shells dissolve
- Warm, shallow ocean saturated with calcium carbonate
- Cool, deep ocean undersaturated with calcium carbonate
 - Lysocline – depth at which a significant amount of CaCO₃ begins to dissolve rapidly

Calcareous Ooze and the CCD
- Scarce calcareous ooze below 5000 meters (16,400 feet) in modern ocean
- Ancient calcareous oozes at greater depths if moved by sea floor spreading

Sea Floor Spreading and Sediment Accumulation
Hydrogenous Marine Sediments

- Minerals precipitate directly from seawater
 - Manganese nodules
 - Phosphates
 - Carbonates
 - Metal sulfides
- Small proportion of marine sediments
- Distributed in diverse environments

Manganese Nodules

- Fist-sized lumps of manganese, iron, and other metals
- Very slow accumulation rates
- Many commercial uses
- Unsure why they are not buried by seafloor sediments

Phosphates and Carbonates

- Phosphates
 - Phosphorus-bearing
 - Occur beneath areas in surface ocean of very high biological productivity
 - Economically useful as fertilizer
- Carbonates
 - Aragonite and calcite
 - Oolites
Metal Sulfides

- Metal sulfides
 - Contain:
 - Iron
 - Nickel
 - Copper
 - Zinc
 - Silver
 - Other metals
 - Associated with hydrothermal vents

Evaporites

- Evaporites
 - Minerals that form when seawater evaporates
 - Restricted open ocean circulation
 - High evaporation rates
 - Halite (common table salt) and gypsum

Evaporative Salts in Death Valley

Cosmogenous Marine Sediments

- Macroscopic meteor debris
- Microscopic iron-nickel and silicate spherules (small globular masses)
 - Tektites
 - Space dust
- Overall, insignificant proportion of marine sediments

K/T Boundary Core, Gulf of Mexico

Death Star? (look at the scale)
Marine Sediment Mixtures

- Usually mixture of different sediment types
- Typically one sediment type dominates in different areas of the sea floor.

Pelagic and Neritic Sediment Distribution

- Neritic sediments cover about \(\frac{1}{4}\) of the sea floor.
- Pelagic sediments cover about \(\frac{3}{4}\) of the sea floor.

Pelagic and Neritic Sediment Distribution

- Distribution controlled by
 - Proximity to sources of lithogenous sediments
 - Productivity of microscopic marine organisms
 - Depth of water
 - Sea floor features

Sea Floor Sediments Represent Surface Ocean Conditions

- Microscopic tests sink slowly from surface ocean to sea floor (10–50 years)
- Tests could be moved horizontally
- Most biogenous tests clump together in fecal pellets
 - Fecal pellets large enough to sink quickly (10–15 days)

Worldwide Marine Sediment Thickness
Resources from Marine Sediments

- Both mineral and organic resources
- Not easily accessible
 - Technological challenges
 - High costs

Energy Resources

- Petroleum
 - Ancient remains of microscopic organisms
 - More than 95% of economic value of oceanic nonliving resources
- More than 30% of world’s oil from offshore resources
- Future offshore exploration will be intense
 - Potential for oil spills

Offshore Drilling Platform

Energy Resources

- Gas Hydrates
 - Also called clathrates
 - High pressures squeeze chilled water and gas into ice-like solid
 - Methane hydrates most common

Energy Resources

- Gas hydrates resemble ice but burn when lit
- May form on sea floor
 - Sea floor methane supports rich community of organisms
- Most deposits on continental shelf

Energy Resources

- Release of sea floor methane may alter global climate.
- Warmer waters may release more methane.
- Methane release may cause underwater slope failure.
 - Tsunami hazard
Energy Resources
- Gas hydrates may be largest store of usable energy.
- Rapidly decompose at surface pressures and temperatures

Other Resources
- Sand and gravel
 - Aggregate in concrete
 - Some is mineral-rich

Other Resources
- Evaporative salts
 - Gypsum – used in drywall
 - Halite – common table salt

Other Resources
- Phosphorite – phosphate minerals
 - Fertilizer for plants
 - Found on continental shelf and slope

Other Resources
- Manganese nodules
 - Lumps of metal
 - Contain manganese, iron, copper, nickel, cobalt
 - Economically useful

Distribution of Sea Floor Manganese Nodules
Other Resources

- Rare Earth elements
 - Assortment of 17 metals
 - Used in technology, e.g., cell phones, television screens, etc.
- Sea floor may hold more rare Earth element deposits than found on land