1 CHAPTER 8

Waves and Water Dynamics

2 A little wave haiku:

- Gulf of Alaska
- miles and miles of storm wind fetch
- at Black's Beach, surf's up!

3 Chapter Overview

- Most waves are wind-driven.
- Most waves are generated by storms.
- Waves transmit energy across the ocean surface.
- Deep water and surf zone waves have different characteristics.
- Tsunami are special fast, long waves generated by seismic events.

4 Wave Generation

- Disturbing force causes waves to form.
- Wind blowing across ocean surface
- Interface of fluids with different densities
 - Air ocean interface
 - -Ocean waves
 - Air air interface
 - -Atmospheric waves
 - Water water interface
 - -Internal waves

5 Types of Waves

6 Internal Waves

- Associated with pycnocline
- Larger than surface waves
- Caused by tides, turbidity currents, winds, ships
- Possible hazard for submarines

7 Wave Movement

- Waves transmit energy
- Cyclic motion of particles in ocean
 - Particles may move
 - Up and down
 - Back and forth
 - Around and around

8 Types of ocean waves

9 Progressive Waves

- Progressive waves oscillate uniformly and progress without breaking
 - Longitudinal
 - Transverse
 - Orbital

10 Longitudinal Waves

- Also called push-pull waves
- Compress and decompress as they travel, like a coiled spring

11 Transverse Waves

- Also called side-to-side waves
- Energy travels at right angles to direction of moving particles.
- Generally only transmit through solids, not liquids

12 Orbital Waves

- Also called interface waves
- Waves on ocean surface

13 Wave Terminology

- Crest
- Trough
- Still water level
 - Zero energy level
- Wave height (H)

14 Orbital Wave Characteristics

- Wave steepness = H/L
 - If wave steepness > 1/7, wave breaks
- Wave period (T) = time for one wavelength to pass fixed point
- Wave frequency = inverse of period or 1/T

•

15 Orbital Wave Characteristics

- Diameter of orbital motion decreases with depth of water.
- Wave base = $\frac{1}{2}$ L
- Hardly any motion below wave base due to wave activity

16 Circular Orbital Motion

- Wave particles move in a circle.
- Waveform travels forward.
- · Wave energy advances.

17 Deep Water Waves

- Wave base depth where orbital movement of water particles stops
- If water depth is greater than wave base ($\geq \frac{1}{2}$ L), wave is a deep water wave.
- Lack of orbital motion at depth useful for floating runways and other structures

18 Deep Water Waves

- Case in point:
- FLIP
 - (FLoating Instrument Package)

19 Deep Water Waves

- Case in point:
- FLIP
 - (FLoating Instrument Package)

20 Deep Water Waves

- Case in point:
- FLIP
 - (FLoating Instrument Package)

21 Deep Water Waves

- Case in point:
- FLIP
 - (Flipped!)

22 Deep Water Waves

- All wind-generated waves in open ocean
- Wave speed = wavelength (L)/period (T)
- Speed called celerity (C)

23 Speed of Deep Water Waves

24 Shallow-Water Waves

- Water depth (d) is less than 1/20 L
 - Water "feels" seafloor
- C (meters/sec) = $3.13 \sqrt{d(meters)}$ or
- C (feet/sec) = $5.67 \sqrt{d}$ (feet)

25 Transitional Waves

- Characteristics of both deep- and shallow-water waves
- Celerity depends on both water depth and wavelength

26 Wave Motion and Refraction

27 Wind-Generated Wave Development

- Capillary waves
 - Wind generates stress on sea surface
- · Gravity waves
- Increasing wave energy

28 Wind Generated Wave Development

- Capillary Waves
 - Ripples
 - Wind generates initial stress on sea surface
- Gravity Waves
 - More energy transferred to ocean
 - Trochoidal waveform as crests become pointed

29 **Sea**

- Sea
 - Where wind-driven waves are generated
 - Also called sea area

30 Factors Affecting Wave Energy

- Wind speed
- Wind duration
- Fetch distance over which wind blows

31 Wave Height

- Directly related to wave energy
- Wave heights usually less than 2 meters (6.6 feet)
- Breakers called whitecaps form when wave reaches critical steepness.
- Beaufort Wind Scale describes appearance of sea surface.

32 Wave Height

- · Directly related to wave energy
- Wave heights usually less than 2 meters (6.6 feet)
- Breakers called whitecaps form when wave reaches critical steepness.
- Beaufort Wind Scale describes appearance of sea surface.

33 Global Wave Heights

34 Beaufort Wind Scale

35 Maximum Wave Height

- USS Ramapo (1933): 152-meters (500 feet) long ship caught in Pacific typhoon
- Waves 34 meters (112 feet) high
- Previously thought waves could not exceed 60 feet

36 Wave Damage

- USS Ramapo undamaged
- Other craft not as lucky
- Ships damaged or disappear annually due to high storm waves

37 Wave Energy

- Fully developed sea
 - Equilibrium condition

- Waves can grow no further
- Swell
 - Uniform, symmetrical waves that travel outward from storm area
 - Long crests
 - Transport energy long distances
- 38 Fully Developed Sea
- 39 Swells
- 40 Wave Train Movement
- 41 Wave Interference Patterns
- 42 Wave Interference Patterns
- 43 Rogue Waves
- 44 Rogue Waves
- 45 Waves in Surf Zone
 - Surf zone zone of breaking waves near shore
 - Shoaling water water becoming gradually more shallow
 - When deep water waves encounter shoaling water less than ½ their wavelength, they become transitional waves.

46 Waves Approaching Shore

- As a deep-water wave becomes a shallow-water wave:
 - Wave speed decreases
 - Wavelength decreases
 - Wave height increases
 - Wave steepness (height/wavelength) increases
 - When steepness $\geq 1/7$, wave breaks

47 Waves Approaching Shore

48 Breakers in Surf Zone

- Surf as swell from distant storms
 - Waves break close to shore
 - Uniform breakers
- Surf generated by local winds
 - Choppy, high energy, unstable water
- Shallow water waves

49 Three Types of Breakers

- Spilling
- Plunging
- Surging

50 Spilling Breakers

- · Gently sloping sea floor
- Wave energy expended over longer distance
- Water slides down front slope of wave

51 Plunging Breakers

- Moderately steep sea floor
- Wave energy expended over shorter distance
- · Best for board surfers
- · Curling wave crest

52 Surging Breakers

- · Steepest sea floor
- · Energy spread over shortest distance
- Best for body surfing
- Waves break on the shore

53 Surfina

· Like riding a gravity-operated water sled

- Balance of gravity and buoyancy
- Skilled surfers position board on wave front
 - Can achieve speeds up to 40 km/hour (25 miles/hour)

54 Wave Refraction

- Waves rarely approach shore at a perfect 90-degree angle.
- As waves approach shore, they bend so wave crests are nearly parallel to shore.
- Wave speed is proportional to the depth of water (shallow-water wave).
- Different segments of the wave crest travel at different speeds.

55 Wave Refraction

56 Wave Refraction

- Wave energy unevenly distributed on shore
- Orthogonal lines or wave rays drawn perpendicular to wave crests
 - More energy released on headlands
 - Energy more dissipated in bays

57 Wave Motion and Refraction

58 Wave Refraction

- Gradually erodes headlands
- Sediment accumulates in bays

59 Wave Reflection

- Waves and wave energy bounced back from barrier
- Reflected wave can interfere with next incoming wave.
- With constructive interference, can create dangerous plunging breakers

60 Wave reflection

61 Standing Waves

- Two waves with same wavelength moving in opposite directions
- Water particles move vertically and horizontally.
- Water sloshes back and forth.

62 Standing Waves

- Nodes have no vertical movement
- Antinodes are alternating crests and troughs.

63 Tsunami

- Seismic sea waves
- Originate from sudden sea floor topography changes
 - Earthquakes most common cause
 - Underwater landslides
 - Underwater volcano collapse
 - Underwater volcanic eruption
 - Meteorite impact splash waves

64 Tsunami Characteristics

- Long wavelengths (> 200 km or 125 miles)
- Behaves as a shallow-water wave
 - Encompasses entire water column, regardless of ocean depth
 - Can pass undetected under boats in open ocean
- Speed proportional to water depth
 - Very fast in open ocean

65 Tsunami

66 Tsunami Destruction

• Sea level can rise up to 40 meters (131 feet) when a tsunami reaches shore.

67 Tsunami

- Most occur in Pacific Ocean
 - More earthquakes and volcanic eruptions

- Damaging to coastal areas
- Loss of human lives

68 Historical Tsunami

- Krakatau 1883
 - Indonesian volcanic eruption
- Scotch Cap, Alaska/Hilo, Hawaii 1946
 - Magnitude 7.3 earthquake in Aleutian Trench
- Papua New Guinea 1998
 - Pacific Ring of Fire magnitude 7.1 earthquake
- 69 Historical Large Tsunami
- 70 Historical Large Tsunami
- 71 Indian Ocean Tsunami
 - December 26, 2004
 - Magnitude 9.2 earthquake off coast of Sumatra
 - 1200 km seafloor displaced between two tectonic plates
 - Deadliest tsunami in history
 - Coastal villages completely wiped out

72 Indian Ocean Tsunami

- Detected by Jason-1 satellite
- Traveled more than 5000 km (3000 mi)
- Wavelength about 500 km (300 mi)
- 230,000–300,000 people in 11 countries killed
- Lack of warning system in Indian Ocean

73 Japan Tsunami

- March 11, 2011 Tohoku Earthquake
 - Magnitude 9.0 earthquake in Japan Trench
 - Felt throughout Pacific basin
 - Most expensive tsunami in history
- Initial surge 15 meters (49 ft)
 - Topped harbor-protecting tsunami walls
 - Amplified by local topography

74 Japan Tsunami

- Killed 19,508 people
- Disrupted power at Fukushima Daiichi nuclear power plant
 - Reactors exploded
 - Radioactivity problem initiated

75 Tsunami Warning System

- Pacific Tsunami Warning Center (PTWC) Honolulu, HI
 - Uses seismic wave recordings to forecast tsunami
- Deep Ocean Assessment and Reporting of Tsunami (DART)
 - System of buoys
 - Detects pulse of tsunami passing

76 Tsunami Watches and Warnings

- Tsunami Watch issued when potential for tsunami exists
- Tsunami Warning unusual wave activity verified
 - Evacuate people
 - Move ships from harbors

77 Waves as Source of Energy

- · Lots of energy associated with waves
- Mostly with large storm waves
 - How to protect power plants

- How to produce power consistently
- Environmental issues

 - Building power plants close to shoreInterfering with life and sediment movement
- 78 Wave Power Plant
- 79 Wave Power Plants
 - First commercial wave power plant began operating in 2000.
 - LIMPET 500 Land Installed Marine Powered Energy Transformer
 - Coast of Scotland
 - 500 kilowatts of power under peak operating capacity
- 80 Wave Farms
 - Portugal 2008
 - Ocean Power Delivery
 - First wave farm
 - About 50 wave power development projects globally
- 81 Global Wave Energy Resources
- 82 End of CHAPTER 8

Waves and Water Dynamics