

Chapter Overview

- Living organisms, including marine species, are classified by characteristics.
- Marine organisms are adapted to the ocean's physical properties.
- The marine environment has distinct divisions.

014 Pearson Education, Inc.

Classification of Life

- Classification based on physical characteristics
- DNA sequencing allows genetic comparison.

2014 Pearson Education, Inc

Classification of Life

- Living and nonliving things made of atoms
- Life consumes energy from environment.
- NASA's definition encompasses potential for extraterrestrial life.

2014 Pearson Education, In

Classification of Life

- Working definition of life
- Living things can
 - Capture, store, and transmit energy
 - Reproduce
 - Adapt to environment
 - Change over time

2014 Peagron Education Inc

Classification of Life

- · Three domains or superkingdoms
- Bacteria simple life forms without nuclei
- Archaea simple, microscopic creatures
- Eukarya complex, multicellular organisms
 - Plants and animals
 - DNA in discrete nucleus

Classification of Living Organisms

- · Five kingdoms
 - Monera
 - Protoctista
 - Fungi
 - Plantae
 - Animalia

Five Kingdoms of Organisms

- Monera
 - Simplest organisms, single-celled
 - Cyanobacteria, heterotrophic bacteria, archaea
- Protoctista
 - Single- and multicelled with nucleus
 - Algae, protozoa
- Fungi
 - Mold, lichen

Five Kingdoms of Organisms

- Plantae
 - Multicelled photosynthetic plants
 - Surf grass, eelgrass, mangrove, marsh grasses
- Animalia
 - Multicelled animals
 - Range from simple sponges to complex vertebrates

Taxonomic Classification

- Carolus Linnaeus -1758
 - Developed basis of modern classification of organisms
- Taxonomy systematic classification of organisms
 - Physical characteristics
 - Genetic information

Taxonomy

- Kingdom
- Phylum
- Class
- Order Family
- Genus
- Species
 - Fundamental unit
 - Population of genetically similar, interbreeding individuals

Types of Plankton

- · Most biomass on Earth consists of plankton.
- Phytoplankton
 - Autotrophic can photosynthesize and produce own food
- Zooplankton
 - Heterotrophic relies on food produced by others

Other Types of Plankton

- Bacterioplankton
 - Very small
 - At least half the ocean's photosynthetic biomass
 Likely most abundant photosynthetic organism
- Virioplankton

 - Smaller than bacterioplankton
 Not well understood, may limit abundance of other plankton through infection
- Holoplankton
 - Entire lives as plankton

Other Types of Plankton

- Meroplankton
 - Part of lives as plankton
 - Juvenile or larval stages
- Macroplankton
 - Large floaters such as jellyfish or Sargassum
- Picoplankton
 - Very small floaters such as bacterioplankton

Nekton

- Independent swimmers
- · Most adult fish and squid
- Marine mammals
- · Marine reptiles

2014 Pageron Education In

Benthos - Bottom Dwellers

- Epifauna live on the surface of the sea floor.
- Infauna live buried in sediments.
- Nektobenthos swim or crawl through water above the seafloor.
- Benthos are most abundant in shallower water
- Many live in perpetual darkness, coldness, and stillness.

2014 Pearson Education, In

Benthos

Hydrothermal Vent Communities

- · Abundant and large deep-ocean benthos
- Discovered in 1977
- · Associated with hot vents
- Bacteria-like archaeon produce food using heat and chemicals.

2014 Pearson Education, In

Number of Marine Species

- Total cataloged species on Earth about 1.8 million
- Many marine species not yet identified due to exploration difficulties
- As many as 2000 new marine and terrestrial species discovered each year

2014 Pearson Education, Inc

Number of Marine Species

- More land species than marine species
- · Ocean has relatively uniform conditions
- Less adaptation required, less speciation
- Marine species overwhelmingly benthic (98%) rather than pelagic (2%)

2014 Pearson Education II

Number of Marine Species

- Census of Marine Life (CoML) -- \$650 million 10 year program completed in 2010
- Discovered at least 1200 new marine species including yeti crab
- Assessed diversity, distribution, and abundance of marine organisms

© 2014 Pearson Education, Inc.

Number of Marine Species

 Currently 250,000 documented marine species

Adaptations of Marine Organisms

- The marine environment is more stable than land.
- Organisms in the ocean are less able to withstand environmental changes.

© 2014 Pearson Education, Inc

Adaptations of Marine Organisms

- Protoplasm substance of living matter
 - More than 80% of mass is water
- Marine animals do not risk desiccation.

2014 Pearson Education

Adaptations of Marine Organisms

- · Physical support
 - Buoyancy
 - How to resist sinking
 - Different support structures in cold (fewer) rather than warm (more
 - appendages) seawater
 - Changes in water viscosity with temperature
 - Smaller size

© 2014 Pearson Education,

Adaptations of Marine Organisms

- High surface area to volume ratio
- Cube a greater resistance to sinking per unit of mass than cube c
- Phytoplankton benefit from being small

Adaptations of Marine Organisms

- Unusual appendages to increase surface area
- Oil in microorganisms to increase buoyancy

© 2014 Pearson Education, In

Viscosity and Streamlining Adaptations

- Streamlining important for larger organisms
 - Shape offers least resistance to fluid flow
- Flattened body
- · Tapering back end

014 Pearson Education, Inc

Reproduction

- Broadcast spawning eggs and sperm directly released into seawater
- Marine organisms take advantage of water's high viscosity to enhance reproduction chances

© 2014 Pearson Education, In

Temperature and Marine Life

- Narrow range of temperature in oceans
- Smaller variations (daily, seasonally, annually)
- Deep ocean is nearly isothermal

2014 Pageron Education In

Ocean Temperature

- More stable than land for four reasons
 - Higher heat capacity of water
 - Ocean warming reduced by evaporation
 - Solar radiation penetrates deeply into ocean layers
 - Ocean mixing

2014 Pearson Education In

Cold vs. Warm Water Species

- Floating organisms smaller in warmer seawater
- More appendages in warmer seawater
- Tropical organisms grow faster, live shorter, reproduce more often
- More species in warmer seawater
- More biomass in cooler seawater (upwelling)

© 2014 Pearson Education In

Temperature and Marine Organisms

Stenothermal

- Organisms withstand small variation in temperature
- Typically live in open ocean

Eurythermal

- Organisms withstand large variation in temperature
- Typically live in coastal waters

2014 Pearson Education, Inc

Salinity and Marine Organisms

Stenohaline

- Organisms withstand only small variation in salinity
- Typically live in open ocean

Euryhaline

- Organisms withstand large variation in salinity
- Typically live in coastal waters, e.g., estuaries

© 2014 Pearson Education, In

Salinity Adaptations

- Extracting minerals from seawater
- High concentration to low concentration

Diffusion

- Cell membrane permeable to nutrients, for example
- Waste passes from cell to ocean

Diffusion Initial Final state state

2014 Pearson Education, In

Adaptations to Marine Environment

- Camouflage through color patterns
- Countershading dark on top, light on bottom

2014 Pearson Education In

Camouflage and Countershading

Deep Scattering Layer

- Daily migration of many marine organisms to deeper, darker parts of ocean
- Dense concentration of organisms creates "false bottom" recorded on sonar readings
- Protection from predators
- Causes increased vertical mixing of ocean waters

© 2014 Pearson Education,

Deep Scattering Layer Depth Talight Nightline Dean Depth Option Products P

Disruptive Coloration

• Large, bold patterns, contrasting colors make animal blend into background

© 2014 Pearson Education, I

Water Pressure

- Increases about 1 atmosphere (1 kg/cm²) with every 10 meters (33 feet) deeper
- Many marine organisms no inner air pockets
- Collapsible rib cage (e.g., sperm whale)

2014 Pearson Education In

Many fish have swim bladder Adjusts buoyancy and allows fish to regulate depth

Divisions of the Marine Environment

- Pelagic (open sea)
 - Neritic (< 200 meters) and oceanic
- Benthic (sea floor)
 - Subneritic and suboceanic

2014 Pearson Education, Inc

Pelagic Environment Divided into biozones Neritic Province – from shore seaward, all water < 200 meters deep Oceanic Province – depth increases beyond 200 meters Divided into biozones Divided into bioz

Oceanic Province

- Epipelagic
 - Only zone to support photosynthesis
 - Dissolved oxygen decreases around 200 meters
- Mesopelagic
 - Organisms capable of bioluminescence common
 - Contains dissolved oxygen minimum layer (OML)

2014 Pearson Education, In

Ocean Province

- Bathypelagic and abyssopelagic zones – 75% of living space in oceanic province
- Bioluminescence common in mesopelagic and deeper
 - Ability to biologically produce light
- Detritus feeding shrimp predators at depth

© 2014 Pearson Education, In

Ocean Zones Based on Light Availability

- Euphotic surface to where enough light exists to support photosynthesis
- Disphotic small but measurable quantities of light
- Aphotic no light

2014 Pearson Education, In

Benthic Environments

- Supralittoral transition from land to sea floor above spring high tide line; spray zone
- Subneritic spring high tide shoreline to 200 m, about ½ the continental shelf
 - Littoral intertidal zone
 - Sublittoral shallow subtidal zone
 - Inner extends to depth where marine algae no longer grow atttached to ocean bottom
 - Outer inner sublittoral to shelf break or 200 m

0 2014 Pearson Education, Inc

Suboceanic Province

- Bathyal continental slope
- Abyssal
 - More than 80% of benthic environment
 - Animal tracks in abyssal clay
- Hadal
 - Below 6000 m
 - Only deep trenches on continental margins

2014 Pearson Education,

