1 — CHAPTER 13

Biological Productivity and Energy Transfer

2 Chapter summary in haiku form

Primary produce

Sunlight and phytoplankton

Ocean is garden

3 Chapter Overview

- Productivity is the same as photosynthesis, which is affected by sunlight and nutrients.
- Productivity is globally and seasonally variable.
- Feeding relationships are represented by food chains and food webs.
- Oceans are being overfished.

4 Primary Productivity

- Primary productivity is the rate at which energy is stored in organic matter.
- Photosynthesis uses solar radiation.
- Chemosynthesis uses chemical reactions.
- 99.9% of the ocean's biomass relies directly or indirectly on photosynthesis for food.

5 Photosynthesis

6 Measurement of Primary Productivity

- Directly capture plankton in plankton nets
- · Measure radioactive carbon in seawater
- · Monitor ocean color with satellites
 - Green pigment chlorophyll
 - SeaWiFS

Ocean Chlorophyll – SeaWiFS

8 Factors Affecting Primary Productivity

- · Nutrient availability
 - Nitrate, phosphorous, iron, silica
 - Most from river runoff
 - Productivity high along continental margins
 - Redfield ratio C:N:P

9 Factors Affecting Primary Productivity

- Solar radiation
 - Uppermost surface seawater and shallow seafloor
 - Compensation depth net photosynthesis becomes zero
 - Euphotic zone—from surface to about 100 meters (330 feet)

10 Light Transmission in Ocean Water

- · Visible light of the electromagnetic spectrum
- · Blue wavelengths penetrate deepest
- · Longer wavelengths (red, orange) absorbed first

11 Transmission of Light in Seawater

10

13

14 Color in the Ocean

- · Color of ocean ranges from deep blue to yellow-green
- Factors
 - Turbidity from runoff

- Photosynthetic pigment (chlorophyll)
 - Eutrophic
 - Oligotrophic
- Secchi Disk measures water transparency

15 Upwelling and Nutrient Supply

- Cooler, deeper seawater is nutrient-rich.
- · Areas of coastal upwelling are sites of high productivity.

16

17 Upwelling and Nutrient Supply

18 Types of Photosynthetic Marine Organisms

- Anthophyta
 - Seed-bearing plants
- Macroscopic (large) algae
- · Microscopic (small) algae
- · Photosynthetic bacteria

19 Anthophyta

- Only in shallow coastal waters
- · Primarily grasses and mangroves

20 Anthophyta

- Only in shallow coastal waters
- Primarily grasses and mangroves

21 Macroscopic Algae

- · "Seaweeds"
- · Brown algae
- · Green algae
- Red algae
 - Most abundant and most widespread
 - Varied colors

22

23

24

25

26 Microscopic Algae

- Produce food for 99% of marine animals
- Most planktonic
- Golden algae
 - Diatoms tests made of silica
 - Coccolithophores plates of calcium carbonate
- Dinoflagellates
 - Red tide (harmful algal bloom)
 - Toxins
 - Fish kills
 - Human illness

27 Microscopic Algae

28

29 30

32 Photosynthetic Bacteria

- Extremely small
- · May be responsible for half of total photosynthetic biomass in oceans
- · Exert critical influence on marine ecosystems

33 Regional Primary Productivity Variations

- Values range from 1 gC/m²/year to 4000 gC/m²/year based on:
 - Uneven distribution of nutrients
 - Changes in availability of sunlight
- 90% of biomass from euphotic zone decomposes before descending

34 Regional Primary Productivity Variations

- Only 1% of organic matter is not decomposed in the deep ocean.
- Biological pump moves material from euphotic zone to sea floor
- Subtropical gyre thermoclines and pycnoclines prevent the resupply of nutrients to the surface.

35 Polar Ocean Productivity

- Winter darkness
- · Summer sunlight
- Phytoplankton (diatoms) bloom
- Zooplankton (mainly small crustaceans) productivity follows
- Example: Arctic Ocean's Barents Sea

36 Polar Ocean Productivity

- · Antarctic productivity slightly greater than Arctic
- · North Atlantic Deep Water upwells near Antarctica
- Productivity decrease from UV radiation ozone hole

37 Polar Ocean Productivity

- · Isothermal waters little mixing
- · Plankton remain at surface
- Blue whales migrate to feed on maximum zooplankton productivity.

38 Productivity in Tropical Oceans

- · Permanent thermocline is barrier to vertical mixing
- Low rate of primary productivity lack of nutrients

39 Productivity in Tropical Oceans

- · High primary productivity in areas of
 - Equatorial upwelling
 - Coastal upwelling
 - Coral reefs
 - Symbiotic algae
 - Recycle nutrients within the ecosystem

40 Temperate Ocean Productivity

- · Productivity limited by
 - Available sunlight
 - Available nutrients

.

3

41 Temperate Ocean Productivity

- · Highly seasonal pattern
- · Winter low
 - Many nutrients, little sunlight
- Spring high
 - Spring bloom
- Summer low
 - Few nutrients, abundant sunlight
- · Fall high
 - Fall bloom

42 Temperate Ocean Seasonal Cycle

43 Comparison of Global Productivities

Energy Flow in Marine Systems

- Biotic community assemblage of organisms in definable area
- Ecosystem biotic community plus environment
- Energy flow is unidirectional based on solar energy input.

45 Energy Flow in Marine Systems

- Three categories of organisms:
- Producers
 - Nourish themselves with photosynthesis or chemosynthesis
 - Autotrophic
- Consumers
 - Eat other organisms
 - Heterotrophic
- Decomposers break down dead organisms or waste

46 Energy Flow in Marine Systems

47 Consumers in Marine Ecosystems

- · Herbivores eat plants
- Carnivores eat other animals
- Omnivores eat plants and animals
- · Bacteriovores eat bacteria

Nutrient Flow in Marine Ecosystems

- Biogeochemical cycling
- •

49 Feeding Strategies

- · Suspension feeding or filter feeding
 - Take in seawater and filter out usable organic matter
- Deposit feeding
 - Take in detritus and sediment and extract usable organic matter
- · Carnivorous feeding
 - Capture and eat other animals

50 Feeding Strategies

51 Trophic Levels

- Feeding stage
- Chemical energy transferred from producers to consumers
- About 10% of energy transferred to next trophic level
- · Gross ecological efficiency

52 Trophic Levels

53 Ecosystem Energy Flow and Efficiency

Δ

54 Food Chains

- Primary producer
- Herbivore
- · One or more carnivores

•

55 Food Webs

- Branching network of many consumers
- Consumers more likely to survive with alternative food sources

•

56 Biomass Pyramid

- The number of individuals and total biomass decreases at successive trophic levels.
- · Organisms increase in size.

•

57 Marine Fisheries

- · Commercial fishing
- · Most from continental shelves
- Over 20% from areas of upwelling that make up 0.1% of ocean surface area

58 Overfishing

- Fish from standing stock the mass present in the ecosystem at any given time
- Overfishing fish stock harvested too rapidly, juveniles not sexually mature to reproduce
- Reduction in Maximum Sustainable Yield (MSY)

59 Exploitation Status of Marine Fish

60 Overfishing

- 80% of available fish stock fully exploited, overexploited, or depleted/recovering
- · Large predatory fish reduced
- · Increased fish production, decreased stocks

61 Incidental Catch or Bycatch

- Non-commercial species are taken incidentally by commercial fishers.
- Bycatch may be up to 8 times more than the intended catch.
 - Birds, turtles, dolphins, sharks

62 Tuna and Dolphins

- · Tuna and dolphins swim together
- Caught in purse seine net
- · Marine Mammals Protection Act addendum for dolphins
- · Driftnets or gill nets banned in 1989

63 Purse Seine Net

64 Fisheries Management

- Regulate fishing
- Conflicting interests
- · Human employment
- Self-sustaining marine ecosystems
- · International waters
- · Enforcement difficult

65 Fisheries Management

- Many large fishing vessels
- · Governments subsidize fishing
- 1995—world fishing fleet spent \$124 billion to catch \$70 billion worth of fish

•

66 Fisheries Management

- Northwest Atlantic Fisheries such as Grand Banks and Georges Bank
- Canada and United States restrict fishing and enforce bans
- · Some fish stocks in North Atlantic rebounding
- Other fish stocks still in decline (e.g., cod)

67 Fisheries Management Effectiveness

68 Fisheries Management

- · Consumer choices in seafood
- · Consume and purchase seafood from healthy, thriving fisheries
 - Examples: farmed seafood, Alaska salmon
- · Ecosystem-based fishery management
- · Avoid overfished or depleted seafood
 - Examples: tuna, shark, shrimp
- 69 Seafood Choices
- 70 End of CHAPTER 13

Biological Productivity and Energy Transfer